E OPTICON

PR-11

On/in-counter Passport Reader

The information in this document is subject to change without notice.

Document History

Model Number:	PR-11	Specification Number:	TS19035
Edition:	1st	Original Spec Number:	(TS19034)
Date:	31-October-2019		

© 2019 Opticon. All rights reserved.

This manual may not, in whole or in part, be copied, photocopied, reproduced, translated or converted to any electronic or machine readable form without prior written consent of Opticon.

Limited Warranty and Disclaimers

Please read this manual carefully before installing or using the product.

Serial Number

A serial number appears on all Opticon products. This official registration number is directly related to the device purchased. Do not remove the serial number from your Opticon device. Removing the serial number voids the warranty.

Warranty

Unless otherwise agreed in a written contract, all Opticon products are warranted against defects in materials and workmanship for two years after purchase excluding batteries. Opticon will repair or, at its option, replace products that are defective in materials or workmanship with proper use during the warranty period. Opticon is not liable for damages caused by modifications made by a customer. In such cases, standard repair charges will apply. If a product is returned under warranty and no defect is found, standard repair charges will apply. Opticon assumes no liability for any direct, indirect, consequential or incidental damages arising out of use or inability to use both the hardware and software, even if Opticon has been informed about the possibility of such damages.

Packaging

The packing materials are recyclable. We recommend that you save all packing material to use should you need to transport your data collector or send it for service. Damage caused by improper packaging during shipment is not covered by the warranty.

Trademarks

Trademarks used are the property of their respective owners.
Opticon Inc. and Opticon Sensors Europe B.V. are wholly owned subsidiaries of OPTOELECTRONICS CO.,LTD., 12-17, Tsukagoshi 4-chome, Warabi-shi, Saitama, Japan 335-0002. TEL +81-(0) 48-446-1183; FAX +81-(0) 48-446-1184

SUPPORT

USA

Phone: 800-636-0090
Email: support@opticonusa.com
Web: www.opticonusa.com

Europe

Phone: +31235692728
Email: support@opticon.com
Web: www.opticon.com

Caution and Warning

Read following caution carefully before installing and/or using this product. Incorrect handling may cause malfunction, overheating, smoke, fire, injury and electric shock etc.

\triangle Caution

Electrical handling

- In case any abnormality occurs in the reader or stops working, unplug the cable and the AC adapter and contact the dealer. Leaving as is may cause malfunction, overheating, smoke and fire.
- Do not use this product at voltage outside the specified range. It may cause overheating, smoke and fire.
- Do not let the AC adapter get wet. It may cause overheating, smoke, fire and electric shock.
- Do not plug/unplug the connectors while power is supplied.

Excessive shock / stress

- Do not drop this product.
- Do not push or place this product under or between heavy items.
- Do not swing the product around by the cable. It may cause injury or damage to the device.

Cable handling

- Do not wrap PR-11 cable around a host device (PC, tablet etc.). It may cause breakage to the strain relief and the cable jacket, and could cause malfunction, overheating, smoke and fire.
- Do not place this product and AC adapter under or between heavy items.
- Do not bend the cable at extremely low temperatures.
- Immediately unplug the cable and AC adapter, then contact your dealer if:
- If the cable jacket tears open or separates from the connector.
- If any core wire, become exposed.
- If the cable generates heat, even if it looks normal.

Continued use in any of these conditions may cause malfunction, overheating, and/or fire.

Operating environment

- Do not use this product at temperatures outside the specified range.
- Do not use this product near combustible materials (gas, gunpowder etc.). It may cause smoke and fire.
- Do not immerse this product in water or any other liquid.
- If any condensation forms on the product, abstain from the use of it until moisture has evaporated to prevent malfunctions.
- Do not store this product in dusty environments and in extremely high humidity.
- Do not store this product in extremely cold or hot places.
- Avoid exposure to direct sunlight for long periods of time.
- Avoid static electricity and do not put the product near a radio or a TV. Excessive static electricity may cause malfunction.
- Do not place in an unstable place.

Others

- Do not disassemble this product. Except for removing plastic cover and metal bracket related to "Cleaning / Change Cable Outlet / Exchange Cable".
- Do not stare into the LED light from the scan window. It may damage your eyes.
- Do not soil or scratch the scan window. It may have a bad effect on the reading.
- Do not expose this product to edible / industrial fat and chemicals.
- This product may be affected by an instantaneous power-on condition of machinery, lighting, or motors, etc.
- Do not let children use this product.

Regulatory Compliance

（1）LED Safety
IEC 62471 Exempt Risk Group
（2）EMC
EN 55024：2010＋A1：2015
EN 55032：2015＋AC：2016 Class B

FCC Part 15 Subpart B Class B

This device complies with part 15 of the FCC Rules．Operation is subject to the following two conditions：（1）this device may not cause harmful Interference，and（2）this device must accept any interference received，including interference that may cause undesired operation．

VCCI クラス B
この装置は，クラスB機器です。この装置は，住宅環境で使用することを目的としています が，この装置がラジオやテレビジョン受信機に近接して使用されると，受信障害を引き起こすこ とがあります。

取扱説明書に従って正しい取り扱いをして下さい。 V C C I－B

Disclaimer：

OPTOELECTRONICS CO．，LTD．Will not bear any responsibility in case of malfunction，accident， repair and damage assurance．

Revision History

Document Name: PR-11 User's Manual

Edition	Date	Page	Section	Description of Changes
1 st	$2019 / 10 / 31$	-	-	Initial release

Contents

Caution and Warning i
1 Abstract 1
1.1 Features of the Reader 2
1.2 Flow to Integrate. 3
2 Before Using 4
2.1 Model Details 5
2.1.1 Standard 5
2.1.2 Model Description 5
2.2 Package Contents 6
2.3 Detailed View 7
2.4 Connect to the Host 8
2.5 How to Read 9
2.6 Operation Transition 10
2.6.1 Operation Transition Diagram 10
2.6.2 Operation Invalid Transition Diagram 11
2.7 Function Key 12
2.8 Speaker and Status LED 13
2.9 Cable Desorption Method. 14
2.9.1 Remove/Attach Plastic Cover 14
2.9.2 Remove/Attach Metal Bracket 14
2.9.3 Change Cable Outlet 15
2.9.4 Removing Cable 15
2.9.5 Attaching Cable 15
3 Configurations 17
3.1 Configuring with Commands 18
3.1.1 Command Packet 18
3.1.2 Configuring with 2D Menu 19
3.1.3 Configuring with 1D Menu Code 20
3.1.4 Force quit start 21
3.2 Command Packet Sending Precautions 22
3.2.1 Each interface Default Setting 22
3.2.2 Save Settings 23
3.2.3 Custom Setting 23
3.2.4 Various Interface Switching 23
3.3 Basic Commands 24
3.3.1 Diagnostic Commands 24
3.3.2 ACK/NAK for Serial Commands 24
3.3.3 Enable/Disable 2D Menu Code 24
3.3.4 Disable Reading Operation 24
3.3.5 Speaker and Indicator 25
3.3.6 Function Key Operation Setting 25
3.3.7 Direct Numerical Input Command 25
4 Indicator Options 26
4.1 Speaker 27
4.1.1 Speaker Loudness 27
4.1.2 Good Read Sound 27
4.1.3 Start-up Sound 28
4.1.4 Read Timeout Sound 28
4.1.5 Intermediate Sound 28
4.2 Status LED 29
4.2.1 Status LED Lighting Color 29
4.2.2 Status LED Lighting-off Time 30
4.3 Indicator in General 30
4.3.1 Indicator Timing 30
5 Interface 31
5.1 USB-HID 32
5.1.1 USB-HID Basic Information 33
5.1.2 Connection Confirmation (USB-HID) 34
5.1.3 NumLock CapsLock control 34
5.1.4 Data Output Speed (USB-HID) 35
5.1.5 Inter Character Delay (USB-HID) 35
5.1.6 Keyboard Language 36
5.1.7 Trouble Shooting (USB-HID) 37
5.2 USB-COM 38
5.2.1 USB-COM Basic Information 39
5.2.2 Integration (USB driver) 39
5.2.3 Connection Confirm 39
5.2.4 Fixed USB-COM Port 39
5.2.5 Connection Method 40
5.2.6 COM to HID Output 40
5.2.7 Trouble Shooting (USB-COM) 41
5.3 RS-232C 42
5.3.1 RS-232C Basic Information 43
5.3.2 Baud Rate (Transfer Speed) 43
5.3.3 Character Format 44
5.3.4 Handshaking (Flow Control) 44
5.3.5 Inter Character Delay (RS-232C) 49
5.3.6 Trouble Shooting (RS-232C) 49
5.4 Common Settings 50
5.4.1 Data Buffer Mode 50
6 Code Options 51
6.1 Setting of Readable Codes 52
6.1.1 1D Codes 52
6.1.2 Postal Code 53
6.1.3 GS1 DataBar 54
6.1.4 GS1 Composite Code 54
6.1.5 2D Codes 55
6.1.6 Other Options for Codes 55
6.1.7 OCR 56
6.2 Setting of Code Common Options 57
6.2.1 GS1 Convert 57
6.2.2 Positive and Negative Image of Barcodes (1D code common) 58
6.2.3 Redundancy (1D code common) 59
6.2.4 Add-on waiting time 59
6.2.5 ECI Protocol Output 60
6.2.6 OCR Free Edit 61
6.3 Setting of Code Specific Options 62
6.3.1 UPC 62
6.3.2 EAN/JAN 65
6.3.3 Code 39 and It. Pharm (Code 32) 69
6.3.4 Codabar 71
6.3.5 Interleaved 2 of 5 and S-Code 73
6.3.6 Code128 74
6.3.7 IATA 75
6.3.8 MSI/Plessey 75
6.3.9 UK/Plessey 75
6.3.10 Telepen 75
6.3.11 Code 11 76
6.3.12 Korean Postal Authority 76
6.3.13 GS1 DataBar 77
6.3.14 Composite GS1 DataBar 78
6.3.15 PDF 417 79
6.3.16 QR Code 80
6.3.17 Data Matrix 82
6.3.18 Aztec Code 83
6.4 Setting of Number of Characters 84
6.4.1 Fixed Length ON, Minimum / Maximum Length for Selected Codes 84
6.4.2 Command List: Fixed Length ON/Minimum/Maximum Length 85
7 String Options 86
7.1 Case Conversion 87
7.2 Prefix / Suffix (appending character function) 88
7.2.1 Set Prefix / Suffix 90
7.2.2 Command List: Settings of the Prefix / Suffix 91
7.2.3 ASCII (Prefix / Suffix Values) 93
7.2.4 Code ID 94
7.2.5 Code Length 94
7.2.6 Scan Time 94
8 Read Options 95
8.1 Read Setting 96
8.1.1 Double Read Reset Time 96
8.2 Auto Trigger Setting 96
8.2.1 Auto Trigger Sensitivity 96
8.2.2 Auto Trigger Sleep Mode 96
8.2.3 Read Time 97
8.2.4 Batch Reading 98
8.2.5 Data Edit Function 98
9 Appendix 99
9.1 Code ID Table 100
9.1.1 Opticon Code ID prefix / suffix value 100
9.1.2 Code Option AIM / ISO15424 Code ID prefix / Suffix value 101
9.2 PR-11 Specification Overview 105
9.2.1 Common Specification Overview 105
9.2.2 Technical Specifications 108
9.2.3 Detailed View 109
9.2.4 Product Label 110
9.2.5 Accessories 111
9.3 Sample Codes 112
9.3.1 1D Code 112
9.3.2 Postal Code 116
9.3.3 GS1 DataBar 117
9.3.4 GS1 Composite Code 118
9.3.5 2D Code 120
9.3.6 OCR Font (Machine Readable Travel Document) 121
9.3.7 OCR Font (Free OCR Edit) 122

1 Abstract

This document provides the user's manual for the PR-11 on-counter passport reader (hereafter called "reader").

1.1 Feature of the Reader

1.2 Flow to Integrate

1.1 Features of the Reader

The PR-11 is on-counter passport reader that allows reading MRTD (Machine Readable Travel Document)* defined by ICAO including passport, standard 1D codes and 2D codes. Its main features are as follows:

* Documents (passport, Visa etc.) with machine-readable characters defined in guideline document 9303 provided by ICAO (International Civil Aviation Organization).
- Smooth passport reading

PR-11 reading window is designed suitable for passport (TD3) size and enable stable reading by holding the passport to the reading window.

- Auto trigger

Automatically detect the target by holding the target and then be scanned instantaneously.

- Flexible cable outlet

PR-11 can select cable outlet in 4 directions. This improves usage at install conditions, and prevents cable damage due to bumping.

- Various interfaces / exchange cable

The PR-11 and the host device supports multi-interface of USB (HID or COM) or RS-232C interface multi-interface. And can be changed by exchanging cable and setting.

- Floodlight

Warm white / white LED illumination reduces the stress to eyes when reading.

- Configure

To configure the PR-11, the "UniversalConfig" PC program is available which can generate serial commands and menu barcodes.

- The reader is a RoHS directive product as declared by OPTOELECTRONICS CO.,LTD.

1.2 Flow to Integrate

Flows to integrate the reader for general use are described below.

2. Download Tools

According to the operation, download necessary tools from our website.

- Setting, Image acquisition, confirm communication
- USB-COM
\rightarrow "UniversalConfig"
\rightarrow "USB Driver"
- COM output \rightarrow HID output conversion
\rightarrow "WIME"

3. Setting and Testing

In the actual enviroment, evaluate the optimum setting according to the operation and perform a reading test.

- Configurations \rightarrow (Refer to 3)
- Indicator
\rightarrow (Refer to 4)
- Interface
$\rightarrow \quad$ (Refer to $\left.\underline{5}^{5}\right)$
- Code Options
- String Options
\rightarrow (Refer to 6)
\rightarrow (Refer to Z)
- Read Options
\rightarrow (Refer to 8)

4. Create Setting Menu

Create a 2D menu code suitable for operation.

- 2D menu code
$\rightarrow \quad$ (Refer to 3.1.2)

Integrate

2 Before Using

Following explains the items required before using.

2.1 Model Details

2.2 Package Contents

2.3 Detailed View
2.4 Connect to the Host
2.5 How to Read
2.6 Operation Transition
2.7 Function Key
2.8 Speaker and Status LED
2.9 Cable Desorption Method

2.1 Model Details

The PR-11 model name is constructed by a combination of following.

| Model name | Housing color | Interface | Optional
 AC Adapter |
| :---: | :---: | :---: | :---: | :---: |
| PR-11 | -BLK
 or
 -WHT | -USB
 or
 -USB-COM
 or
 - -RS232C | None |
| | | + PS | |

2.1.1 Standard

The following specs are the standard products.

Standard	Description
PR-11-BLK-USB	Black housing USB-HID 2.1m cable
PR-11-WHT-USB	White housing USB-HID 2.1 m cable

Note: Other combinations only as special order, please contact sales offices for this.

2.1.2 Model Description

- Housing color

Symbol	Description
-BLK	Housing color is black
- WHT	Housing color is white

- Interface Cable

Symbol	Description
-USB	USB cable is connected and interface default setting is USB-HID.
-USB-COM	USB cable is connected and interface default setting is USB-COM.
-RS232C	RS-232C cable (external AC adapter power supply spec) is connected.

- Optional AC adapter

Symbol	
None	AC adapter not included.
+ PS	AC adapter for RS-232C external power supply is included.

2.2 Package Contents

Following items are packed to this product. Please check before using.
USB-HID / USB-COM Interface Model
Following are included to USB interface model.

RS-232C Interface Model

Following are packed to RS-232C interface model.

2.3 Detailed View

Detailed view and function description of the reader.

Name	Description
Scan Window	Light path of the imager, LED illumination and aiming.
Status LEDs	States LED turns on when in standby mode and indicates PR-11 is ready to read. Various lighting color can also be set. LED turns off when reading success and turns on again.
Security Lock Hole	Hole to attach security wire lock to protect the reader from stolen. (Size: $3 \times 7 \mathrm{~mm} /$ Depth: 3.5 mm)
Speaker Holes	Sound from a built-in speaker comes out through these holes. When they are covered, the speaker sound will be diminished.
Function Key	Loudness and sound frequency can be changed by the function key operation. It also can be set as invalid by setting.
Cable Outlet	Cable outlet can be selected from 4 directions depending on install condition.
Product Label	Product standards and serial number are indicated.
Rubber Feet	Rubber feet to prevent slipping.

2.4 Connect to the Host

This section describes how to connect each interface to the host.
For interface setting details, refer to " 5 . Interface"
Connecting with the Host device
Connect interface connector to the host. When power is on, the reader makes startup sound and the color indicator on the top of reader lights.
After indicator operation is completed, the reader will be ready for reading.
USB-HID / USB-COM Interface Connection Diagram

RS-232C Interface Connection Diagram

D-Sub 9pin (female) specification

Pin No.	Signal name	Notes	Pin No.	Signal Name	Notes	Pin Assignment
1	Shield	Open (not connected)	6	-	Connected to pin 4	1
2	TxD		7	CTS		
3	RxD		8	RTS		
4	-	Connected to pin 6	9	(NC)	Open (not connected)	5
5	GND		Case	FG	Shield	

2.5 How to Read

Automatically starts reading by holding a target to the scan window located on upper side of the reader. OCR fonts on passports can be read.
1 D and 2 D code on a paper and display on smart phone can also be read instantly.

2.6 Operation Transition

Following are the operation status transition of the reader.

2.6.1 Operation Transition Diagram

Status Description

Status	Description
Read	Process reading code.
Auto trigger standby	The warm white illumination LED in center is slightly lighted and detecting a target. When the target comes in to the scan area and detected by the reader, it shifts to reading.
Auto trigger sleep	The warm white illumination LED in center is off and detecting. Default is invalid. Becomes effective by setting the transition time.
Reading operation stop*	Operation of the reader is stopped.

* "Reading operation stop" is configured using commands. This cannot be done while using USB-HID interface.

Operation current transition (USB-HID)

Status	Typ.	Unit
Reading	350	mA
Auto trigger standby	190	mA

2.6.2 Operation Invalid Transition Diagram

For USB-COM and RS-232C, reader operation can be disabled by command's serial communication. When disabled, auto trigger operation becomes invalid.

Refer to 3.3 .4 for setting command.

2.7 Function Key

Loudness and sound frequency can be changed by the function key operation.
It also can be set as invalid by setting.
Refer to 3.3.6 for the function key operation setting detail.

Key operation	Setting to be change	Operation
Press till 2 seconds	Loudness	Change as Maximum/Loud/Normal/Minimum
Press 2 seconds or more	Sound frequency	Change in sound frequency 4 pattern

Loudness changes	Default		1		2		3
Loudness	Maximum	\rightarrow	Loud	\rightarrow	Normal	\rightarrow	Minimum

Sound frequency changes	Default		1		2		3
Frequency	800 Hz	\rightarrow	700 Hz	\rightarrow	900 Hz	\rightarrow	$3000 \mathrm{~Hz} \rightarrow$ $2500 \mathrm{~Hz}\left({ }^{*}\right)$
Duration	75 ms	\rightarrow	75 ms	\rightarrow	75 ms	\rightarrow	100 ms

[^0]
2.8 Speaker and Status LED

Speaker sound and lighting color of LED indicates status of the reader.
The reader status, speaker sound and status LED are described as below.

Item	Rumble timing	Tone interval	LED color	Enable/Disable
Start-up sound	When powered on.	Low - Low middle 2 time Middle tone	3 color Combination	Configurable (Default: Enable)
Good read sound	When reading successes	Middle tone 1 time	Light off for a moment and re-lights after.	Configurable (Default: Enable)
Data transmission error	In USB, when connection is not established.	(Middle - Middle low tone) 6 times	Red	Enable (Fixed)
Batch reading Intermediate sound	When one code is read and if it does not yet meet the conditions to output data in batch reading or concatenated code reading.	Short High tone 1 time	None	Configurable (Default: Enable)
Read timeout sound	When code is not read within the effective time period.	Low tone 2 times	Red	Configurable (Default: Disable)
1D ZZ menu Reading sound	When reading start ZZ menu code.	Middle - Middle low Middle high tone	Yellow	Enable (Fixed)
	When reading defined menu code.	Middle - Middle low -Middle-high tone	Yellow	Enable (Fixed)
	When reading not defined menu code.	Low tone 2 times	Red	Enable (Fixed)
	When reading end ZZ menu code.	Middle - Middle low -Middle-high tone	Yellow	Enable (Fixed)
	When save setting is complete	(Middle - Middle low Middle high tone) 3 times	None	Enable (Fixed)
2D menu Reading sound	When reading 2D menu code.	Middle - Middle low Middle high tone	Yellow	Enable (Fixed)
	When save setting is complete.	(Middle - Middle low Middle high tone) 3 times	None	Enable (Fixed)
High temperature protection mode	If internal temperature exceeds a certain temperature, reading operation becomes disabled. While in this mode, it beeps with a 3 seconds interval.	High tone 2 times	Orange	Enable (Fixed)

* Low: around 1000 Hz , Low middle: around $1000-2000 \mathrm{~Hz}$, Middle low: around 2500 Hz , Middle: around 3000 Hz ,

Middle high: around 3500 Hz , High: around 4000 Hz .

* Refer to 4. Indicator for setting detail.
* Above is the definition of the representative status and does not indicate all of the operations.

2.9 Cable Desorption Method

By removing a part of the housing, the reader is capable of changing cable outlet and exchanging cable.

- What to prepare: Phillips driver (Size: No.2)
* The reader does not have a dustproof. Please refrain from using in a dusty environment.
* Be careful not to soil or scratch the scan window.

2.9.1 Remove/Attach Plastic Cover

Remove/attach plastic cover as described below.

Remove/attach the screw (2 pcs) on the side of plastic cover. (When attaching: Recommended tightening torque $6.3 \mathrm{kgf} \cdot \mathrm{cm}$)

Remove/attach plastic cover.
*When using the security wire lock, remove the wire before the procedure.
*Confirm front-back direction of the cover when attaching, and be careful not to squeeze the cable between the cover and bracket.

2.9.2 Remove/Attach Metal Bracket

Remove/attach metal bracket as described below.

2.9.3 Change Cable Outlet

Remove the cable from the hook at the cable outlet, and set the cable to the direction to eject.

2.9.4 Removing Cable

Disconnect the USB connector or AC adapter cable from the host, and follow the steps below to remove. When changing interface, interface setting change is also required. Refer to 3.2.4 for interface switching setting/menu.

2.9.5 Attaching Cable

Disconnect the USB connector or AC adapter cable from the host, and follow the steps below to attach. When changing interface, interface setting change is also required. Refer 3.2.4 for interface switching setting/menu.

3 Configurations

This chapter explains the reader configuration, default setting and saving setting, and basic commands.

3.1 Configuring with Commands

3.2 Command Packet Sending Precautions

3.3 Basic Commands

3.1 Configuring with Commands

The reader can be configured by sending commands via the serial interface or by reading 1D or 2D menu labels. This section describes the serial commands.

3.1.1 Command Packet

The command packet, from header to terminator, is defined as below.

Command Header*2*	Command ID ${ }^{* 1}$		Command Terminator $^{* 2}$
<ESC>	None	$1-2$ digits (ASCII)	<CR>
$(0 \times 1 B)$	$[(0 \times 5 B)$	3 digits (ASCII)	$(0 \times 0 \mathrm{D})$

*1 It is possible to send multiple command IDs between a single header and terminator, except for single digit IDs. *2 A combination of command header $<\mathrm{STX}>(0 \times 02)$ and terminator $<\mathrm{ETX}>(0 \times 03)$ is also possible.

Input examples:
1-digit command
<ESC>D<CR>

$$
\text { 2-digit command }<E S C>\Delta \Delta<C R>
$$

$$
\text { 3-digit command } \quad<\mathrm{ESC}>[\Delta \Delta \Delta<\mathrm{CR}>
$$

$$
\text { Two } 2 \text { digit commands } \quad<\mathrm{ESC}>\Delta \Delta \Delta \Delta<\mathrm{CR}>
$$

$$
2 \text { and } 3 \text { digits command } \quad<E S C>\Delta \Delta[\Delta \Delta \Delta<C R>
$$

Command can be sent via "UniversalConfig"
Enter command to the "command:" box of this utility with a character string* and click [Send] button to set the reader.

* For UniversalConfig, enter with a character sting (not ASCII code).

Command or commands entered in the "command:" box of this utility do not require <ESC> or <CR>.

3.1.2 Configuring with 2D Menu

A single 2D menu code can contain multiple settings that will be processed in order, in one operation. Therefore, you can configure the reader with multiple settings by reading only one 2D menu code.
Scanning a 2D menu code will always perform a 'save settings' upon completion, so a Z2 command to save current settings is not needed.

Data Packet:
@MENU_OPTO@ZZ@MenuCommand 1@MenuCommand 2@ZZ@OTPO_UNEM@

"@MENU_OPTO"	(Start key)
"@"	(Separator)
"ZZ"	(Start menu)
"@" (Separator) "Any menu command" (U2 etc)	\leftarrow Multiple sets allowed
"@"	
"ZZ"	
"@"	(Separator)
"OTPO_UNEM@"	(Stop key)

- 2D menu code can be created at "UniversalConfig".

*Please contact sales offices for the tools.

3.1.3 Configuring with 1D Menu Code

By scanning a series of 1D menu codes specially designed to configure the required functions, you can set up the reader to optimize its performance for your particular application.

The basic procedures are as follows:
Scan SET menu code (ZZ). The reader now enters menu mode.
\downarrow
Scan one or more desired options.
Multiple menu codes can be read when you want to configure more than one option.
\downarrow
Read END menu code (ZZ). All the settings are saved in non-volatile memory.

* 1D Menu codes encode an ID consisting of two to five alphanumeric characters. 1D Menu codes are Code39 labels with modified start/stop characters and therefore the reader will not acknowledge a 1D menu code as a normal barcode.
- Menu barcode can be created at "UniversalConfig".

*Please contact sales offices for the tools.

3.1.4 Force quit start

If the Status LED remains flashing and the reader is unable to read barcodes, use this recovery method. This typically occurs if you accidently scan USB interface change while using an RS-232C cable

Force initialization - Recovery method

- Power off the reader (remove the power).
- Press and hold the function key
- Power on the reader while pressing the function key. (Keep pressing the function key.)
- While the Status LED is flashing, hold function key for 10 seconds.
- The recovery signal will sound and the status LED should stop flashing.
- Function key should now be operational and the reader should be able to read barcodes.
- Scan RS-232C interface setting menu code, and reboot before using.
*In force quit start, no scan data will be output to the host device until the interface is configured.

3.2 Command Packet Sending Precautions

Following are the reader setting method.

Setting value, writing and reading diagram

* 1D menu code and 2D menu code setting are always saved in "Startup setting".
* When updating the firmware, status of interface will remained, but "Startup setting" and "Custom setting" will be initialized.

Active Settings Settings that is currently active.
(Including newly added settings from power on)
Startup Settings
Custom Settings
Factory Default Settings
The setting to be read when power is turned on.
Custom setting to be saved on another memory area.
Default setting is the same as the initial setting described in this manual.
Various interfaces require switching setting.

3.2.1 Each interface Default Setting

The Active Settings can be returned to the factory default settings. Set the command that corresponds to the interface being used.

Item	Command	Interface	Description	Remark
Factory Default Settings	SU	USB-HID	Restore USB-HID to factory default settings	
	[C01	USB-COM	Restore USB-COM to factory default settings	
	U2	RS-232C	Restore RS-232C to factory default settings	

3.2.2 Save Settings

The Active Settings can be written into the "Startup Settings".

Item	Command	Description	Remark
Save settings	Z2	Save the Active Settings as Startup Settings	Command only

* Place "Z2" at the end of command packet to be saved.
* Saving settings for more than 30,000 times may destroy memory. Avoid saving every time.
* There are options that will not be enabled until "Save settings" is sent, such as baud rate setting.

3.2.3 Custom Setting

Item	Command	Description	Remark
Custom settings	$[B A P$	Read out Custom Settings	
	$[B A Q$	Save to Custom Settings	

* Place "[BAQ" at the end of command packet to be saved.
* To save both "Custom settings" and "Active Settings" at same time, send "[BAQZ2".
* Custom settings for more than 30,000 times may destroy memory. When setting frequently, avoid saving every time.

3.2.4 Various Interface Switching

Various interface factory setting can be change. Cable changing is required for USB and RS-232C. This setting is also saved when updating firmware.

Switch to USB-HID

Item	Command	Menu	Remark
Change interface to USB-HID	[X.ZSU[X.ZZ2		Confirm cable

Switch to USB-COM

Item	Command	Menu	Remark
Change interface to USB-COM	[X.Z[C01[X.ZZ2		Confirm cable

Switch to RS-232C

Item	Command	Menu	Remark
Change interface to RS-232C	[X.ZU2[X.ZZ2		Confirm cable

3.3 Basic Commands

Following are the basic commands for the reader.

3.3.1 Diagnostic Commands

These commands can be used to get diagnostics information from the reader.

Item	Command	Description	Remark
Diagnostics	Z1	Transmit software version	
	Z3	Transmit settings	
	[EAR	Transmit only changes from default	
	ZA	Transmit ASCII printable string	
	YV	Transmit ASCII control string	

3.3.2 ACK/NAK for Serial Commands

When "ACK/NAK for serial commands" is enabled, the reader will send an ACK (0×06) when a command is received and accepted, and a NAK (0×15) when a command is rejected.

Item	Command	Description	Default
ACK/NAK	WC	Enable ACK/NAK for serial commands	
	WD	Disable ACK/NAK for serial commands	\checkmark

3.3.3 Enable/Disable 2D Menu Code

To enable/disable the processing of 2 D menu codes, use the settings below.
Setting 'Disable 2D menu codes' is recommended when 2D menu codes are not used.

Item	Command	Description	Default
Enable/Disable 2D menu code	$[$ D1Y	Enable 2D menu code	\checkmark
	$[D 1 Z$	Disable 2D menu code	

3.3.4 Disable Reading Operation

To enable/disable the processing of reading, use the settings below.
Auto trigger become invalid by setting this disable reading. In this setting, menu codes cannot be read, only commands via serial communication are supported.

Item	Command	Description	Default	Remark
Enable/Disable	[EAT	Enable reader reading operation	\checkmark	Command only
Reading operation	[EAU	Disable reader reading operation		Command only

3.3.5 Speaker and Indicator

These commands reflect "4.1. Speaker" and "4.2 Status LED".

Item	Command	Description	Remark
Speaker	B	Sound the good read sound	Command only
	E	Sound the error sound	
Status LED	L	Flash the status LED	

3.3.6 Function Key Operation Setting

Default function key is speaker loudness setting. Use the setting below to "Disable Function Key".

Item	Command		Description	Default
Function Key Operation Setting	[EHB	Q0	Disable function key	
		Q1	Change speaker loudness and frequency	\checkmark

3.3.7 Direct Numerical Input Command

When a command requires additional numerical input, the commands below can be used. Use these in one packet together with the command that requires the numerical input.

Item	Command	Description	Remark
Direct input numerical values	Q0	0	Input in a specified format
	Q1	1	
	Q2	2	
	Q3	3	
	Q4	4	
	Q5	5	
	Q6	6	
	Q7	7	
	Q8	8	
	Q9	9	

4 Indicator Options

This chapter describes the options for Speaker and Status LED.

4.1 Speaker sound

4.2 Status LED

4.3 Indicator in General

4.1 Speaker

Speaker operation settings are described below.

4.1.1 Speaker Loudness

The speaker loudness can be set with these options, which is applied to all speakers.

Item	Command		Default
Speaker loudness	T0	Speaker loudness : Maximum	\checkmark
	T1	Speaker loudness : Loud	
	T2	Speaker loudness : Normal	
	T3	Speaker loudness : Minimum	

4.1.2 Good Read Sound

The good read sound is activated when a code is successfully read and the data is output.
3 types of tone and 5 types of duration are configurable. The good read sound can also be disabled.

- Speaker Disable/Enable

Item	Command		Description
Speaker Disable/Enable	W0	Disable speaker	
	W8	Enable speaker	\checkmark

- Speaker duration

Item	Command		Default
Speaker duration	W7	Speaker duration: 50 ms	\checkmark
	[EFW	Speaker duration: 75 ms	
	W4	Speaker duration: 100 ms	
	W5	Speaker duration: 200 ms	
	W6	Speaker duration: 400 ms	

- Speaker tone

Item	Command	Description	Default
Speaker tone $\left({ }^{*}\right)$	W1	Middle frequency speaker (3000 Hz)	
	W2	2 steps speaker (high - low sound)	2600 Hz
	W3	2 steps speaker (low - high sound)	

* The good read speaker tone (frequency) can be set with numerical parameters by inputting the command followed by a 4-digit numerical command.
Frequency range normally use is 2000 to 4000 Hz . The reader most resonance around 2750 Hz .

Item	Command				Description	Default	
Speaker tone frequency setting	[DF0	Qa	Qb	Qc	Qd	Numerical setting of speaker tone frequency $(1000 a+100 b+10 c+d)[H z]$	2600 Hz $(1-9999)$

4.1.3 Start-up Sound

This setting determines whether the reader emits a sound when it is powered on.

Item	Command	Description	Default	Remark
Startup sound	GD	Disable startup sound		Enabled only with "2"'
	GC	Enable startup sound	\checkmark	Enabled only with "Z2"

4.1.4 Read Timeout Sound

In case a code is not read within the timeout period, emits an error sound when the read operation ends.

Item	Command	Description	Default
Read timeout sound	$[$ EAP	Disable read timeout sound	\checkmark
	$[E A Q$	Enable read timeout sound	

4.1.5 Intermediate Sound

When one code is decoded, emits an intermediate sound to indicate that the code is decoded but it does not yet meet the conditions to output data.

For instance, suppose five-codes reading is set in buffer mode, emits the intermediate sound after the decoding of the 1st, 2nd, 3rd and 4th code and finally a good read sounds when the last code is decoded after which the data is output. The data is not output when the 1st to 4th codes are decoded but reading of each code can be confirmed by the intermediate sound. When the good read sound is disabled, this setting will be forcibly disabled.

Item	Command		Description	Default
Intermediate sound	[EBY	Q0	Disable intermediate sound	
		Q1	Enable intermediate sound	\checkmark

[^1]
4.2 Status LED

Each status LED operation settings are described below.

4.2.1 Status LED Lighting Color

The colors of status LED can be change depend on the each operation's lighting.

Item	Command					Function	Command Description	Initial
Status LED Lighting color	[EG2	Qa	Qb	Qc	Qd			
		a				Lighting situation	0 : When reading success 1: When unapproved process 2: When reading standby	As below table
			b			Red optical power	Power: 0-3 level	As below table
				c		Green optical power		
					d	Blue optical power		

Default
It is set according to the states as follows.

Light Situation	Red Optical Power	Green Optical Power	Blue Optical Power	Lighting Color
Reading standby	0: OFF	0: OFF	2: 20\%	Light blue
Reading success	0: OFF	0: OFF	0: OFF	Off
Unapproved process	3: 100\%	0: OFF	0: OFF	Red

Color and command example of reading success

Color	Command Example	Color	Command Example
White	$[$ EG2Q0Q2Q2Q2	Red	[EG2Q0Q2Q0Q0
Green	$[E G 2 Q 0 Q 0 Q 2 Q 0$	Blue	$[$ EG2Q0Q0Q0Q2
Orange	$[$ EG2Q0Q3Q1Q0	Yellow	$[$ EG2Q0Q3Q2Q0
Cyan	$[E G 2 Q 0 Q 0 Q 2 Q 2$	Emerald	$[$ EG2Q0Q1Q3Q1
Pink	$[E G 2 Q 0 Q 3 Q 1 Q 1$	Off	$[$ EG2Q0Q0Q0Q0

4.2.2 Status LED Lighting-off Time

The status LED lights off after a code was successfully decoded and the data was output. This can be disabled or set for several durations.

Item	Command	Description	Default
Status LED	T4	Disable indicator	
	[XT8	Indicator duration: 100 ms	
	T5	Indicator duration: 200 ms	\checkmark
	T6	Indicator duration: 400 ms	
	T7	Indicator duration: 800 ms	

4.3 Indicator in General

Common settings for each indicator are described below.

4.3.1 Indicator Timing

The indicators can be activated after decoding a code and before or after transmitting the data.

Item	Command	Description	Default	Remark
Indicator timing	VY	Before data transmission	\checkmark	soon after decoding
	VZ	After data transmission		

5 Interface

The reader support USB-HID, USB-COM and RS-232C interface.
This chapter explains each interface in detail.

5.1 USB-HID

5.2 USB-COM

5.3 RS-232C

5.4 Common Settings

5.1 USB-HID

This chapter explains USB-HID interface settings.
5.1.1 USB-HID Basic Information
5.1.2 Connection Confirmation (USB-HID)
5.1.3 NumLock CapsLock control
5.1.4 Data Output Speed (USB-HID)
5.1.5 Inter Character Delay (USB-HID)
5.1.6 Keyboard Language
5.1.7 \quad Trouble Shooting (USB-HID)

5.1.1 USB-HID Basic Information

Basic information for USB-HID interface is as follows.

Items	Description	Notes
USB	USB2.0 Full Speed	Differs from actual power consumption.
Required power supply capacity	500 mA	
Vendor ID	065A	A001

5.1.2 Connection Confirmation (USB-HID)

USB-HID operate just by connecting to the computer. Following are the procedure to confirm connection.

For Windows 10

1. Connect the reader to the PC.
2. Right-click "Windows icon" and select "Device Manager".
3. Open "Human interface device".
"USB input device" is added.
(When using USB connection mouse or keyboard etc., multiple devices will be displayed.)

5.1.3 NumLock CapsLock control

Set NumLock and CapsLock control method when sending data.

Item	Command	Command description	Initial setting	Notes
NumLock control	RN	Numeric value does not use numeric keypad	\checkmark	
	RM	Numeric value use numeric keypad		
	/A	Follow NumLock status		${ }^{*} 1$
CapsLock control	5 Q	No control	\checkmark	
	8 A	Invert CapsLock status		${ }^{* 2}$
	2 Z	CapsLock automatic control		${ }^{* 3}$

*1. Only use numeric keypad when NumLock is ON.
*2. When starting transmits, send CapsLock and invert status. Use when CapsLock is always ON. Return to CapsLock status when sending is completed.
*3. Control CapsLock status to display as the original string. Return to original CapsLock status when transmit is complete.

5.1.4 Data Output Speed (USB-HID)

Adjust data output speed in USB-HID. Selecting shorter time will make output faster, but depend on host system, outputting all character may fail.
To enable this setting, reboot is necessary after saving the setting.

Item	Command		Command description	Default (Effective range)	
USB-HID Data transfer interval	[E9M	Qa	Qb	Set transfer interval Interval: $(10 \mathrm{a}+\mathrm{b}) \mathrm{ms}$ 「Unit $]$	4 ms $1-16 \mathrm{~ms}$

Setting example)

Set the transmit interval to 1 ms (fastest).
Command: [E9MQ1
Set the transmit interval to 10 ms .
Command: [E9MQ1Q0

5.1.5 Inter Character Delay (USB-HID)

The inter character delay introduces a configurable delay after each transmitted character.
This may be used if the host does not support flow control and is not capable of handling the received data at full speed.

Item	Command	Description	Default
Inter character delay	LA	No delay	\checkmark
	LB	Delay $=1$	
	LC	Delay $=2$	
	LD	Delay $=3$	
	LE	Delay $=4$	
	LF	Delay $=5$	
	LG	Delay $=6$	
	LH	Delay $=7$	
	LI	Delay $=8$	
	LJ	Delay $=9$	

5.1.6 Keyboard Language

Set the keyboard language used on the host PC which the reader to be connect.
Keyboard arrangement differs depend on the country or language.
If setting is incorrect, output result will be output incorrect.

Item	Command	Description	Code page	Default
Keyboard Language	KE	USA	Windows 1252	\checkmark
	KV	UK	Windows 1252	
	KG	German	Windows 1252	
	KI	French	Windows 1252	
	OW	Italian	Windows 1252	
	KJ	Spanish	Windows 1252	
	PH	Portuguese	Windows 1252	
	PL	Swiss French	Windows 1252	
	PK	Swiss German	Windows 1252	
	PI	Dutch	Windows 1252	
	PJ	Belgian	Windows 1252	
	PD	Swedish	Windows 1252	
	PG	Finnish	Windows 1252	
	KK	Danish	Windows 1252	
	PE	Norwegian	Windows 1252	
	WF	Czech	Windows 1250	
	[BAY	Hungarian	Windows 1250	
	[BPJ	Turkish	Windows 1254	
	[EF4	Russian English	Windows 1251	
	[EF5	Russian Cyrillic	Windows 1251	
	[BAZ	Brazilian	Windows 1252	
	[E76	Chinese	Windows 1252	
	[E77	Korean	Windows 1252	
	[E78	Taiwanese	Windows 1252	
	PM	Japanese	Shift-JIS	

5.1.7 Trouble Shooting (USB-HID)

Following are the countermeasures for the troubles caused at USB-HID.

Behavior	Check points / Countermeasures
Output is not correct Garbled characters	- Set the keyboard language and output destination application setting correctly. - In case the host side's processing speed is not sufficient, insert inter character delay. - If control string is included, confirm that Ctrl +"any alphabet key" do not overlap with the shortcut key on the host side.
Multi byte character is not outputted	- Please consider Windows application WIME with USB-COM. Refer to 5.3.6
Line-break is doubled	- Set the suffix additional setting according to the host side application's line-break.
Cannot output images	- Cannot transfer images.
The reader does not appear in Device Manager. Restart unexpectedly. Error beep sounds and does not output by reading	- Check that USB cable is properly connected. - Ensure that connected USB port is operating properly. - Confirm USB port power supply capability. If using laptop or hub, supply capacity might insufficient. - Remove from USB port at once, and after a while, insert again. - Insert to different port.

5.2 USB-COM

This chapter explains USB-COM interface settings.
5.2.1 USB-COM Basic Information5.2.2 Integration (USB driver)5.2.3 Connection Confirmation (USB-COM)5.2.4 Fixed UBS-COM Port5.2.5 Connection Method
5.2.6 \quad COM to HID Output
5.2.7 Trouble Shooting (USB-COM)

5.2.1 USB-COM Basic Information

Item	Description	
Transfer Speed	Full Speed USB 2.0 (FS mode)	Note
Required power supply capability	500 mA	Actual current value is different.
Vendor ID	065A	
Product ID	A002	
Other	CDC-ACM compliance	Default: not fix
Fixed COM number	Fixing COM number is possible.	

5.2.2 Integration (USB driver)

USB driver is required to connect to the PC via USB-COM interface.
Please download the USB driver from our website, and install appropriately according to the attached documents.

5.2.3 Connection Confirm

USB-COM interface, confirm the connection by following procedure.
For Windows 10
Install Opticon USB driver.

1. Connect the reader to the PC.
2. Right-click "Windows icon" and select "Device Manager".
3. Open "Ports (COM \& LPT)".

5.2.4 Fixed USB-COM Port

This option enables fixed USB-COM Port number. The COM port number to which the USB connected Windows PC is assigned will always be the same port number.

Item	Command		Description	Default
Fixed USB-COM Port number and driver selection	[EGC	Q0	Not to fix assigned COM port number	\checkmark
		Q1	Fix assigned COM port number	

* Fixed USB-COM Port settings will become active after a reboot and initialization of the reader.

5.2.5 Connection Method

Connect to the host PC by following procedure.

1. Start the tool to serial communicates (emulator or UniversalConfig).
2. Connect to the COM port confirmed at 5.2.3 Connection.

3. For Command packet, refer to 3.1.1.

5.2.6 COM to HID Output

WIME (Windows .NET Application) allows to convert data received by the reader via virtual COM port (USB-COM) to HID-like and transfer to the application which has focus.

In case multi byte character is not output correctly with USB-HID, this can be solved by using WIME.

5.2.7 Trouble Shooting (USB-COM)

Following are the several countermeasures for the trouble caused by USB-COM.

Behavior	Check points / Countermeasures		
Not recognized by the PC (Reader does not appear in the device manager)	- Check that USB cable is properly connected. - Ensure that connected USB port is operating properly. - In case of connecting to wireless devices like Bluetooth, disconnect once. - Confirm the USB port power supply capability. When using laptop or hub, supply capacity may insufficient. - Remove from the USB port at once, and after a while, insert again. - Insert to different port.		
Error beep sounds and does not output by reading	In addition to above; - Open the COM port with the communication tool.		
	- Confirm the COM port number by device manager. Refer to 5.2.3 for how to check.		
Cannot connect			
(Cannot open COM port)			Close the tool and re-open it. Operation and countermeasures vary
:---			
depending on the tool. Please refer to the tool help or manual.			
- Reboot the PC.			

5.3 RS-232C

This chapter explains RS-232C interface settings.

5.3.1 \quad RS-232C Basic Information
 5.3.2 Baud Rate (Transfer Speed)
 5.3.3 Character Format
 5.3.4 Handshaking (Flow Control)
 5.3.5 Inter Character Delay (RS-232C)
 5.3.6 Trouble Shooting (RS-232C)

5.3.1 RS-232C Basic Information

Following are the RS-232C interface basic information.

Item	Description	Default
Transfer speed	300 to 115200 bps	9600 bps
Data length	$7 / 8$ bits	8 bit
Parity bit	None/Even/Odd	None
Stop bit	$1 / 2$ bits	1 bit
Handshake	None, BUSY/READY, Modem, ACK/NAK	None
Other option	Flow control, Inter character delay	

5.3.2 Baud Rate (Transfer Speed)

The baud rate is the rate at which bits are transmitted from the reader to the host and vice versa. Both the reader and the host must be set to the same baud rate.

The following commands can be used to configure the baud rate. "Z2" (safe settings in non-volatile memory) needs be used after these commands to activate and save the new configuration.

Item	Command	Description	Default	Remark
Baud rate	K1	300 bps		Enabled only with "Z2"
	K2	600 bps		
	K3	1200 bps		
	K4	2400 bps		
	K5	4800 bps		
	K6	9600 bps	\checkmark	
	K7	19200 bps		
	K8	38400 bps		
	K9	57600 bps		
	SZ	115200 bps		

5.3.3 Character Format

The data characters are transferred in the format shown below. A party bit is added to every character so that the total number of 1 's in the data bits, together with the parity bit, is odd for odd parity and even for even parity.

The following commands are provided to set the number of data bits, type of parity bit and the number of stop bits. The Z2 command (save settings in non-volatile memory) needs be used after these commands to activate and save the new configuration.

Item	Command	Description	Default	Remark
Data bit	L0	7 data bits		Enabled after sending "Z2"
	L1	8 data bits	\checkmark	
Parity bit	L2	None parity	\checkmark	
	L3	Even parity		
	L4	Odd parity		
Stop bit	L5	1 stop bit	\checkmark	
	L6	2 stop bits		

5.3.4 Handshaking (Flow Control)

The communication control method can be set using these commands.
"Z2" (save command in non-volatile memory) needs be used after these commands to activate and save the new configuration.

Item	Command	Description	Default	Remark
Handshaking	P0	No handshake	\checkmark	
	P1	Busy/ready		
	P2	Modem		
	P3	ACK/NAK		
	P4	ACK/NAK NO RESPONSE		

A) No Handshaking

The reader communicates regardless of the state of the host system.

* In this setting, the commands from the host system may not be received correctly.

B) BUSY/READY

The reader and the host system notify each other when they are ready to receive data (BUSY/READY) via their RTS line. When they are connected as shown in the figure below, the CTS line can be used to check if the other side is busy (off) or ready to receive data (on).

The reader's RTS is normally on (so ready to receive data) except during the processing of received data, while transmitting data, and while it is busy processing 1D/2D menu codes. When the reader wants to send data, it first will check if its CTS line is on (to be sure that the host is ready to receive data). If the CTS line is off, the reader does not send the data but waits for a specific timeout period for the CTS line to be tuned on. If the CTS line is not turned on within the time specified, the data transmission will be aborted.

<CTS, TxD signal timing>

When the CTS line (RTS signal on the host side) is turned off during a TxD signal transmission, the reader stops the transmission. When the CTS signal is turned on during signal transmission, characters will be transmitted.

TxD

$n-1$	n	$n+1$	$n+2$

CTS

The following menu codes / commands are provided for the CTS line timeout setting.
"Z2" (save settings in non-volatile memory) needs be used after these commands to activate and save the new configuration.

Item	Command	Description	Default	Remark
CTS timeout	10	Flow Control timeout Indefinitely	\checkmark	
	11	Flow Control timeout 100 ms		
	12	Flow Control timeout 200 ms		
	13	Flow Control timeout 400 ms		

C) MODEM

The reader's RTS is OFF as soon as power is supplied to the reader. The reader will turn RTS ON when it wants to transmit data to the host. The host should respond with CTS ON when it is ready to receive data. While the host CTS is ON the reader is allowed to transmit data. When all data has been transmitted, the reader will turn RTS OFF. In response, the host should turn OFF the reader's CTS. If, while RTS is ON, the CTS line is not ON for a certain configurable period, the reader will terminate the transmission with an error indication of the sound.
D) ACK/NAK Control

In ACK/NAK mode, the reader will transmit data and expects to receive one of the following responses from the host:

Response: "ACK" (ASCII:0x06)
The reader terminates transmission with the good-read sound.
Response: "NAK" (ASCII:0x15)
The reader sends the data again.
Response: "DC1" (ASCII:0x11)
The reader terminates transmission without the good-read or error sound.
Timeout
If there is no response within 1second, the reader terminates transmission with the error sound.

The following commands are provided for the setting ACK/NAK timeout.

Item	Command	Description	Default
ACK/NAK timeout	$[$ XI4	ACK/NAK timeout Indefinitely	
	$[$ XI5	ACK/NAK timeout 100 ms	
	$[$ XI6	ACK/NAK timeout 500 ms	\checkmark
	$[$ XI7	ACK/NAK timeout 1 s	

E) ACK/NAK No Response

The difference from the ACK/NAK mode is that when no response from the host is received within 100 ms , the reader assumes that the data has been received correctly by the host.
Response: "ACK" (ASCII:0x06)
The reader terminates transmission with the good-read sound.
Response: "NAK" (ASCII:0x15)
The reader sends the data again.
Response: "DC1" (ASCII:0x11)
The reader terminates transmission without a good-read or error sound.
Timeout
If there is no response within 100 ms then the reader terminates transmission with the good read sound.
<ACK/NAK No Response Flow Chart>

5.3.5 Inter Character Delay (RS-232C)

The inter character delay introduces a configurable delay after each transmitted character. This may be used if the host does not support flow control and is not capable of handling the received data.

The following menu codes / commands are provided for the inter character delay setting.

Item	Command	Description	Default	Remark
Inter character delay	KA	No delay	\checkmark	Activated only after "Z2"
	KB	20 ms delay		
	KC	50 ms delay		
	KD	100 ms delay		

5.3.6 Trouble Shooting (RS-232C)

Following are the several countermeasures for the trouble caused by RS-232C

Behavior	Check points / Countermeasures
Cannot communicate	-Confirm communication settings (5.3.2 transfer speed, 5.3 .3 character format etc.) -After changing communication setting, send Z2 command. Most of communication settings are not reflected until Z2 command is sent.
No response when sending command	-Confirm 5.3.4 handshake setting.
Garbled characters	-Confirm communication settings (5.3.2 transfer speed, 5.3 .3 character format etc.)
-Set the 5.3.5 inter character delay according to the host PC's processing speed. -Confirm that code to be read matches to the character code of the communication tool.	
Line-break is doubled	-Check the line-break setting of the communication tool.

5.4 Common Settings

This section describes the settings common to all interfaces.

5.4.1 Data Buffer Mode

This option allows you to specify whether to read an object during data output.
When buffer mode is enabled, the reader can perform other operations such as barcode scanning while outputting decoded data. However, the reading performance may degrade during the data output. When buffer mode is disabled, the reader stops other operations until the completion of decoded data output.

The following menu codes / commands are provided for the data buffer mode setting.

Item	Command	Description	Default
Data buffer mode	[D80	Data buffer disable	
	[D81	Data buffer enable *	\checkmark

* When handshaking is configured (refer to 5.3.4), this setting is ignored and Data Buffer Mode is disabled.

6 Code Options

This chapter describes the code options for the reader.
These options allow you to configure the enabled code types, code specific options, and number of characters to be read.
It is strongly recommended to enable only the required codes and options for best reading performance. These settings do not affect the reading of the 1D menu codes.
*Refer 9.3 Sample codes for the codes.

6.1 Setting of Readable Codes

6.2 Setting of Code Common Options

6.3 Setting of Code Specific Option

6.4 Setting of Number of Characters

6.1 Setting of Readable Codes

The following tables show the supported symbologies and their configuration commands.

- Single

Only the specified symbology will be enabled and all other symbologies will be disabled.

- Multiple

The specified symbology will be enabled in addition to the already enabled symbologies.

- Disable

The specified symbology will be disabled. All other enabled symbologies stay enabled.

6.1.1 1D Codes

Symbologies	Enable/Disable command			Default					
	Single	Multiple	Disable	Enable	$\begin{gathered} \text { Mini } \\ \text { length } \end{gathered}$	$\begin{aligned} & \text { Positive } \\ & \text { Negative } \\ & \text { Image } \\ & \hline \end{aligned}$	$\begin{gathered} \text { STISPS } \\ \text { trans } \\ \text { mission } \\ \hline \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { check } \\ \hline \end{gathered}$	Suffix
UPC	J1	R1	[X4B	\checkmark	-	$\begin{array}{\|l\|} \hline \text { Positive } \\ \text { Image } \\ \text { Only } \end{array}$	-	\checkmark	USB-HID "ENTER" USB-COM RS-232C "CR"
UPC-A	[J1A	[R1A	[V1A	\checkmark	-		-	\checkmark	
UPC-E	[J1B	[R1B	[V1B	\checkmark	-		-	\checkmark	
EAN/JAN	J4	R4	[X4E	\checkmark	-		-	\checkmark	
EAN/JAN-13	JG	JU	[DDM	\checkmark	-		-	\checkmark	
EAN/JAN-8	JA	JO	[DDN	\checkmark	-		-	\checkmark	
Code 39	A2	B2	VB	\checkmark	1		\times	\times	
Tri-Optic	JD	JZ	[DDJ	\checkmark	-				
Codabar	A3	B3	vc	\checkmark	2		*	\times	
Industrial 2 of 5	J7	R7	[X 4 K	\checkmark	5		-	\times	
Interleaved 2 of 5	J8	R8	[X4L	\checkmark	6		-	\times	
S-Code	RA	R9	[DDK		5				
Code 128*	A6	B6	VE	\checkmark	1		-	\checkmark	
Code 93	A5	B5	VD	\checkmark	1		-	\checkmark	
IATA	A4	B4	VH	\checkmark	5		-	\times	
MSI/Plessey	A7	B7	VF		3		-	\checkmark	
UK/Plessey	A1	B1	VA		2		-	\checkmark	
Telepen	A9	B9	VG		1		-	\checkmark	
Code 11	[BLB	[BLC	[BLA		1		-	\checkmark	
Matrix 2 of 5	AB	BB	[DDL		5		-	\times	

* GS-128 will reads as Code 128. Refer to 6.2.1 for convert GS1-128 to GS1 and read.

6.1.2 Postal Code

S. Symbologies	Enable/Disable command			Default	
	Single	Multiple	Disable	Enable	Suffix
Chinese Post Matrix 2 of 5	JE	JS	JT		
Korean Postal Authority	JL	WH	WI		
Intelligent Mail Barcode	[D5H	[D5F	[D5G		
POSTNET	[D6C	[D6A	[D6B		
PLANET	[DG2	[DG3	[DG4		"ENTER"
Japan Postal	[D5R	[D5P	[D5Q		USB-COM RS-232C "CR"
Netherland KIX Code	[D5M	[D5K	[D5L		
Australian Postal	[D6O	[D6M	[D6N		
UK Postal (Royal mail)	[DG7	[DG8	[DG9		
4-State Mailmark Barcode	[DGS	[DGT	[DGU		

6.1.3 GS1 DataBar

Symbologies	Enable/Disable command						Default	
	Single		Multiple		Disable		Enable	Suffix
GS1 DataBar - GS1 DataBar Omnidirectional - GS1 DataBar Truncated - GS1 DataBar Stacked - GS1 DataBar Stacked Omnidirectional	J9	[BC6	JX	[BCl	SJ	[BCU	\checkmark	$\begin{gathered} \text { USB-HID } \\ \text { "ENTER" } \\ \text { USB- } \\ \text { COM } \\ \text { RS-232C } \\ \text { "CR" } \end{gathered}$
GS1 DataBar Limited	JJ		JY		SK		\checkmark	
GS1 DataBar Expanded - GS1 DataBar Expanded - GS1 DataBar Expanded Stacked	JK		DR		SL		\checkmark	

* Refer to 6.2.1 for convert GS1 and read.

6.1.4 GS1 Composite Code

Symbologies	Enable/Disable command		Default	
	Multiple	Disable	Enable	Suffix
Composite GS1 DataBar - CC-A - CC-B - Limited CC-A - Limited CC-B - Expanded CC-A - Expanded CC-B	[BHE	[BHF	\checkmark	$\begin{gathered} \text { USB-HID } \\ \text { "ENTER" } \\ \text { USB- } \\ \text { COM } \\ \text { RS-232C } \\ \text { "CR" } \end{gathered}$
Composite GS1-128 - CC-A - CC-B - CC-C			\checkmark	
Composite EAN -EAN-13 CC-A - EAN-13 CC-B - EAN-8 CC-A -EAN-8 CC-B	[D1V	[D1W		
Composite UPC - UPC-A CC-A - UPC-A CC-B -UPC-E CC-A - UPC-E CC-B				

* Refer to 6.2.1 for convert GS1 and read.
* When composite EAN or composite UPC is enabled, EAN or UPC only cannot be read.

6.1.5 2D Codes

Symbologies	Enable/Disable command			Default	
	Single	Multiple	Disable	Enable	Suffix
PDF417	$[B C 3$	$[B C F$	$[B C R$	\checkmark	
MicroPDF417	$[B C 4$	$[B C G$	$[B C S$		
Codablock F	$[D 4 R$	$[D 4 P$	$[D 4 Q$		
QR Code	$[B C 1$	$[B C D$	$[B C P$	\checkmark	USB-HID UENTER" $/$ USB-COM RS-232C "CR"
Micro QR	$[D 38$	$[D 2 U$	$[D 2 V$	\checkmark	
Data Matrix (ECC 200)	$[B C 0$	$[B C C$	$[B C O$	\checkmark	
Aztec Code	$[B C 5$	$[B C H$	$[B C T$	\checkmark	
Aztec Runes	$[B F 4$	$[B F 2$	$[B F 3$		
Chinese-sensible code	$[D 4 K$	$[D 4 L$	$[D 4 M$		
Maxi Code	$[B C 2$	$[B C E$	$[B C Q$		

* Refer to 6.2.1 for convert and read GS1 QR code and GS1 Data Matrix.

6.1.6 Other Options for Codes

Symbologies	Single	Multiple	Disable	Remark
All codes (1D, 2D)	A0		B0	Excluding add-on
All 1D codes	$[B C A$	$[B C M$	$[B C Y$	Excluding add-on
All 2D codes $^{*} 1$	$[B C B$	$[B C N$	$[B C Z$	$* 2$

*1 PDF417, Codablock F, QR Code, Data Matrix(ECC 200), Maxi Code, MicroPDF417, Aztec Code, Composite code, Aztec Runes, Micro QR and Chinese-sensible code
*2 When 'ALL 2D codes' is enabled, a link flag will be enabled, and UPC/EAN cannot be read.

6.1.7 OCR

ICAO Machine Readable Travel Documents Charts

Documents	Enable/Disable command		Default		
	Single	Enable	Disable	Enable	Suffix
Machine readable Passports	[DJ1	[DJ2	[DJ3	\checkmark	USB-HID "ENTER" I
Machine readable Visa-A	[DJ4	[DJ5	[DJ6	\checkmark	
Machine readable Visa-B	[DJ7	[DJ8	[DJ9	\checkmark	
Official Travel Documents 1	[DJA	[DJB	[DJC	\checkmark	
Official Travel Documents 2	[DJD	[DJE	[DJF	\checkmark	

* ICAO travel document can be read regardless of the image direction because the format is fixed.

OCR free edit
To free edit standard OCR font and read, refer to 6.2.6 OCR free edit.
For advanced setting, please check the separate sheet "Data Edit Programing Manual".

6.2 Setting of Code Common Options

6.2.1 GS1 Convert

FNC1 that indicate variable length termination will not be transmitted when reading GS1 symbol (GS1128, GS1 DataBar, GS1 DataBar Composite, GS1 DataMatrix, GS1 QR Code) label with default setting. This is because FNC1 is not included in ASCII. For GS1 conversion, in order to analyses the GS1 data at the host side, convert valuable length data termination FNC1 to "Ctrl+]" and key outputs for USB-HID, and for USB-COM and RS-232C, convert to GS(0x1D) and outputs. However, if the last of valuable length data is Al data, $\mathrm{FNC1}$ does not exist and GS is not outputted.
<Initial setting status>

FNC1 (Non-output)	AI	Data (Fixed length)	AI Data (Variable length)	FNC1 (Non-output)	\cdots	AI	AI Data (Variable length)

<GS1 after conversion>

- For USB-HID

AIM-ID (output)	AI	Data (Fixed length)	AI Data (Variable length)	Ctrl+] (Key output)	\cdots	AI	AI Data (Variable length)

- For USB-COM and RS-232C

AIM-ID (output)	AI	Data (Fixed length)	AI Data (Variable length)	GS(0x1D) (Output)	\cdots	AI	AI Data (Variable length)

* For AIM-ID, refer to 9.1.2.

GS1 conversion setting can be set by following menu / command.

GS1 conversion supported symbologies	Item	Command	Command description	Initial setting
GS1-128 GS1 DataBar		[X/0	Disable GS1 conversion	\checkmark
GS1 DataBar Composite GS1 Data Matrix GS1 QR Code	GS1 Convert		[X/4	Enable GS1 conversion

- To process and output GS1 conversion data within the reader.

Our application tool "UniversalConfig" enables processing and outputting GS1 symbol data.

6.2.2 Positive and Negative Image of Barcodes (1D code common)

Normally, the barcode is printed in black on white background, but there a case with white on black background. Black on white background is called normal (positive) barcode and white on black background is called negative barcode.

Following are the positive and negative barcode reading setting.

Code	Item	Command		Description	Default
1D	Positive and Negative Image of Barcodes	[DLA	Q1	Decode negative bar codes only.	\checkmark
	Q2	Decode positive bar codes and negative bar codes.			

[^2]
6.2.3 Redundancy (1D code common)

When redundancy is enabled, a 1D code has to be scanned and decoded multiple times and the results must be the same before it considered correctly decoded. The redundancy count is the number of times that the code has to be scanned in addition to the first scan. Selecting a higher redundancy count reduces the probability of reading errors, but it makes the output response slower. With high quality printed codes, the default setting is enough to ensure the reliability.

Item	Command	Description	Default
Redundancy (*)	X0	Read 1 time, redundancy $=0$	
	X1	Read 2 time, redundancy $=1$	
	X2	Read 3 time, redundancy $=2$	
	X3	Read 4 time, redundancy $=3$	\checkmark
	BS	Read 5 time, redundancy $=4$	
	BT	Read 6 time, redundancy $=5$	
	BU	Read 7 time, redundancy $=6$	
	BV	Read 8 time, redundancy $=7$	
	BW	Read 9 time, redundancy $=8$	

* This setting only affects the reading of 1D codes. 2D codes are not affected by this redundancy setting.

6.2.4 Add-on waiting time

The reader search valid UPC/EAN add-on code within the selected time. If effective add-on code is found, reader sends data immediately. If there is nothing after the code, reader sends data without add-on. If there is something after the code, but not valid add-on code, reader ignores the code.
"Supported code"

- UPC 2 digits / 5 digits add-on and GS1 composition symbol
- EAN/JAN 2digits / 5 digits add-on and GS1 composition symbol.

Item	Command	Command description	Initial Setting
Add-on waiting time	XA	Add-on standby mode invalid	
	XB	Add-on standby mode 0.25 seconds	
	XC	Add-on standby mode 0.5 seconds	
	XD	Add-on standby mode 0.75 seconds	\checkmark

6.2.5 ECI Protocol Output

This allows setting whether to output data relates to ECI (Extended Channel Interpretation) protocol which is within 2D code (QR code, Data Matrix, Aztec Code, Maxi Code) data.
For the data that ECI protocol exists, ECI number is indicated with a 6 -digits number following the back-slack and 2 back-lash indicates back-slash.
To not to output ECl protocol, change the data career identifier to ID not using ECl protocol, delete the 6 -digits number following the back-slash and replace the 2 back-slashes to 1 back-slash.
"Supported Code"
QR Code, Data Matrix, Aztec Code, Maxi Code
Output example)

Output: JQ2\000001test
test
Not output:]Q1test\test
*Back-slash: '\'
Setting command are as follows;

Item	Command	Description	Default
ECI protocol output setting	$[D L E$	Not output ECI protocol	\checkmark
	$[D L F$	Output ECI protocol	

6.2.6 OCR Free Edit

To read OCR standard format, set from UniversalConfig OCR free edit function.

Numerical value / alphabet / symbol of up to 40 digits and 2 rows can be set.

[^3]
6.3 Setting of Code Specific Options

6.3.1 UPC

UPC code is a barcode for distribution industry established by the United States Uniform Code Council Inc.

UPC-A Overview

Following are the UPC-A configuration.

Item	Overview
Character set	Numeric (0-9)
Number of digits	12 digits (11 digits + CD 1 digit) fixed length
CD (check digit) check method	Modulus 10 / Wait 3

Transfer data format

Leading "0"	Data 11 digits	CD 1 digit

*Setting to 13 digits transfer data format that transfer a leading "0" and CD, the format becomes compatible with JAN / EAN-13.

- Setting items

UPC-A Add-on 2 digits / 5 digits

UPC-A add-on 2 digits / 5 digits is a barcode of UPC-A plus 2 digits or 5 digits supplement code.

* When Add-on is enabled, 2D reader needs Add-on code to be within the read range or fails to read. If it is not within the range, after Add-on waiting time, it reads as UPC or EAN.
When Add-on is enabled and reading only UPC/EAN, reading response will decrease.
Transfer data format (UPC-A Add-on 2 digits)

Leading "0"	Data 11 digits	CD 1 digit	Add-on 2 digits
Transfer data format (UPC-A Add-on 5 digits)			
Leading "0"	Data 11 digits	CD1 digit	Add-on 5 digits

UPC-A CD transfer / front " 0 " transfer

This allows you to set whether or not to transmit CD (check digit) and a leading " 0 ".
The 13 digits transfer data format that transfer a leading " 0 " and $C D$, the format becomes compatible with JAN / EAN-13.

UPC-E Overview

Following are the UPC-E configuration.

Item	Overview
Character set	Numeric (0-9)
Number of digits	7 digits (6 digits + CD 1 digit) fixed length
CD (check digit) check method	Modulus 10 / Wait 3

Transfer data format

Leading "0"	Data 6 digits	CD 1 digits

UPC-E Add-on 2 digits / 5 digits

UPC-E Add-on 2 digits / 5 digits is a barcode of UPC-E plus 2 digits or 5 digits supplement code.
Transfer data format (UPC-E Add-on 2 digits)

Leading "0"	Data 6 digits	CD 1 digit	Add-on 2 digits
Transfer data format (UPC-E Add-on 5 digits)			
Leading "0"	Data 6 digits	CD 1 digit	Add-on 5 digits

UPC-E CD transfer / front " 0 " transfer

This allows you to set whether or not to transmit CD (check digit) and a leading " 0 ".
The 8 digits transfer data format that transfer a leading " 0 " and $C D$, the format becomes compatible with JAN / EAN-8.

Convert UPC-E to UPC-A format and transfer

Transfer setting to UPC-A format is possible.

Code	Item	Command	Description	Default
UPC-A	UPC-A Leading zero CD transmission	E2	UPC-A, Leading zero, transmit CD	
		E3	UPC-A, No leading zero, transmit CD	\checkmark
		E4	UPC-A, Leading zero, not transmit CD	
		E5	UPC-A, No leading zero, not transmit CD	
	Add-on 2 digits	J2	Enable single UPC Add-on 2	
		R2	Enable UPC Add-on 2	
		[X4C	Disable UPC Add-on 2	\checkmark
	Add-on 5 digits	J3	Enable single UPC Add-on 5	
		R3	Enable UPC Add-on 5	
		[X4D	Disable UPC Add-on 5	\checkmark
UPC-E	UPC-E Leading zero CD transmission	E6	UPC-E , Leading zero, transmit CD, transfer digits 8 digits	
		E7	UPC-E , No leading zero, transmit CD, transfer digits 7 digits	\checkmark
		E8	UPC-E , Leading zero, not transmit CD, transfer digits 7 digits	
		E9	UPC-E , No leading zero, not transmit CD, transfer digits 6 digits	
	UPC-A, E conversion	6Q	Transmit UPC-E	\checkmark
		6 P	Transmit as UPC-A	

6.3.2 EAN/JAN

EAN/JAN-13 and EAN/JAN-8 are standardized as common product symbol in the distribution industry. There are 13 digits standard version and 8 digits shorten version.

EAN/JAN-13 Overview

Following are the EAN/JAN-13 configuration.

Item	Overview
Character set	Numeric (0-9)
Number of digits	13 digits (12 digits + CD 1 digit) fixed length
CD (check digit) check method	Modulus 10 / Wait 3

Transfer data format
Data 12 digits \quad CD 1 digit

- Setting items

EAN/JAN-13 Add-on 2 digits / 5 digits

EAN/JAN-13 Add-on 2 digits / 5 digits is the barcode of EAN/JAN -13 plus 2 digits or 5 digits supplement code.

* When Add-on is enabled, 2D reader needs Add-on code to be within the read range or fails to read. If it is not within the range, after Add-on waiting time, it reads as UPC or EAN. When Add-on is enabled and reading only UPC/EAN, reading response will decrease.

Transfer data format (EAN/JAN -13 Add-on 2 digits)

Data 12 digits	CD 1 digit	Add-on 2 digits

Transfer data format (EAN/JAN -13 Add-on 5 digits)

Data 12 digits	CD 1 digit	Add-on 5 digits

EAN/JAN -13 CD transfer

Whether to transfer EAN/JAN-13 CD (check digit) or not is configurable.

EAN-13 forced add-on setting

EAN-13 with a leading 3 digits 378/379/529/414/419/434/439/977/978 can be forcibly handles as "with add-on". When enabled, the barcode without the add-on which is the condition of a leading 3 digits cannot be read.

ISBN conversion

When ISBN conversion is enabled, it converts the data with a leading "978" or "979" of EAN-13.
ISBN conversion re-calculates the CD by omitting a leading 3 digits and outputs it in 10 digits. If CD is 10, it outputs X.
Example) ISBN conversion of EAN-13 " 9791230671184 "; converts it to " 1230671188 " and outputs it. ISBN conversion of EAN-13 "9780123782830"; converts it to "012378283X" and outputs it.

ISSN conversion

When ISSN conversion is enabled, it converts data with a leading "977" of EAN-13.
ISSN conversion will re-calculate CD by omitting leading 3 digits and outputs it in 8 digits.

ISMN conversion

When ISMN conversion is enabled, it converts data with a leading " 9790 " of EAN-13.
ISMN conversion will convert a leading 4 digits to " M " and outputs it in 10 digits.
When ISMN conversion is disabled and ISBN conversion is enabled, EAN-13 with a leading " 9790 " will be converted to ISBN format.
Example) ISMN conversion of EAN-13 "9790230671187"; converts it to "M230671187" and outputs it.

EAN/JAN-8 Overview

Following are the EAN/JAN-8 configuration.

Item	Overview
Character set	Numeric (0-9)
Number of digits	8 digits (7 digits + CD 1 digit) fixed length
CD (check digit) check method	Modulus 10 / Wait 3

Transfer data format

Data 7 digits	CD 1 digit

- Setting items

EAN/JAN -8 Add-on 2 digits / 5 digits

EAN/JAN-8 Add-on 2 digits / 5 digits is the barcode of EAN/JAN-8 plus 2 digits or 5 digits supplement code.
*When Add-on is enabled, 2D reader needs Add-on code to be within the read range or fails to read. If it is not within the range, after Add-on waiting time, it reads as UPC or EAN.
When Add-on is permitted and reading only UPC/EAN, reading response will decrease.
Transfer data format (EAN/JAN-8 Add-on 2digits)

Data 7 digits	CD 1 digit	Add-on 2 digits

Transfer data format (EAN/JAN-8 Add-on 5 digits)

Data 7 digits	CD 1 digit	Add-on 5 digits

EAN/JAN -8 CD transfer

Whether to transfer EAN/JAN-8 CD (check digit) or not is configurable.

Following are EAN/JAN-13 optional settings.

Symbologies	Item	Command	Description	Default
EAN/JAN-13	CD Transmission	6K	Transmit EAN/JAN -13 CD	\checkmark
		6 J	Not transmit EAN/JAN-13 CD	
	Add-on 2 digits	JH	Singly enable EAN/JAN -13 Add-on 2 digits	
		JV	Add enable EAN/JAN -13 Add-on 2 digits	
		[X4N	Disable EAN/JAN -13 Add-on 2 digits	
	Add-on 5 digits	J	Singly enable EAN/JAN -13 Add-on 5 digits	
		JW	Add enable EAN/JAN -13 Add-on 5 digits	
		[X4P	Disable EAN/JAN -13 Add-on 5 digits	
EAN -13	EAN-13 Forced add-on	-G	When EAN-13 start at 378/379 / 529; Enable EAN forced add-on	
		-H	When EAN-13 start at $378 / 379$ / 529; Disable EAN forced add-on	\checkmark
		-C	When EAN-13 start at $434 / 439 / 414 / 419$ / 977 / 978; Enable EAN forced add-on	
		-D	When EAN-13 start at $434 / 439 / 414 / 419$ / 977 / 978; Disable EAN forced add-on	\checkmark
	ISBN Conversion	IB	Disable ISBN conversion	\checkmark
		IA	Enable ISBN conversion	
		IK	When possible, enable ISBN conversion	
	ISSN Conversion	HN	Disable ISSN conversion	\checkmark
		HO	Enable ISSN conversion	
		4 V	When possible, enable ISSN conversion	
	ISMN Conversion	10	Disable ISMN conversion	\checkmark
		IP	Enable ISMN conversion	
		IQ	When possible, enable ISMN conversion	

Following are EAN/JAN-8 option al settings.

Symbologies	Item	Command	Description	Default
EAN/JAN-8	CD Transmission	61	Transmit EAN/JAN-8 CD	\checkmark
		6 H	Not transmit EAN/JAN-8 CD	
	Add-on 2 digits	JB	Singly enable EAN/JAN-8 Add-on 2 digits	
		JP	Add enable EAN/JAN-8 Add-on 2 digits	
		[X4M	Disable EAN/JAN-8 Add-on 2 digits	
	Add-on 5 digits	JC	Singly enable EAN/JAN-8 Add-on 5 digits	
		JQ	Add enable EAN/JAN-8 Add-on 5 digits	
		[X40	Disable EAN/JAN-8 Add-on 5 digits	

6.3.3 Code 39 and It. Pharm (Code 32)

Code 39 is a barcode developed by Intermec and has been standardized as ISO/IEC 16388. It is mainly used in the industrial fields.

Code39 Overview

Following are the Code 39 configuration.

item	Overview
Character set	Numeric (0-9) Symbol (-, Space \$ / + \%) Alphabet (A-Z)
Start / Stop code	*
Digits	Variable length

Transfer data format

Start code u*"	Data Variable length	CD	Stop code "*"

- Setting items

Calculate Code 39 CD

Whether to check CD (check digit) or not is configurable.

Transfer Code 39 CD

Whether to transfer CD (check digit) or not is configurable.

Transfer Code 39 Start / Stop Code

Whether to transfer Start / Stop code or not is configurable.

Code 39 Various Conversion Settings

Standard Code39:

Send data character as it is.

Full ASCII Code39:

This setting converts the correct combination of the data character to Full ASCII and transmits it. If an incorrect combination is found in the character, it will not be transmitted.

When possible Full ASCII Code39:
This setting converts the specified combination of the data character to Full ASCII and transmits it. Incorrect combination will be transmitted without converting, as it is.

Italian Pharmaceutical:

This setting converts Code39 data to Italian Pharmaceutical format.
Italian Pharmaceutical format is a fixed length containing 1 digit of mandatory check digit after 8 digits numeric data.
When not adapting to Italian Pharmaceutical, it will not be sent.
When possible Italian Pharmaceutical:
This setting convert converts Code39 data to Italian Pharmaceutical format. When not adapting to Italian Pharmaceutical, it will be send with standard Code39 etc.

Code 39 Optional setting are as follows.

Code	Item	Command	Description	Default
Code 39 It. Pharm (Code 32)	CD check	C1	Not check CD	\checkmark
		C0	Check CD	
	CD transmission	D9	Transmit Code39 CD	\checkmark
		D8	Not transmit Code39 CD	
	ST/SP transmission	D1	Not transmit ST/SP	\checkmark
		D0	Transmit ST/SP	
	Full ASCII conversion	D5	Normal Code 39	\checkmark
		D4	Full ASCII Code 39	
		+K	Full ASCII Code 39 if possible	
	It. Pharm	D6	It. Pharmaceutical only	
		D7	It. Pharmaceutical if possible	
		DA	Not transmit leading A for It. Pharm	\checkmark
		DB	Transmit leading A for It. Pharm	
	Concatenation	+M	Disable concatenation	\checkmark
		+L	Enable concatenation	

6.3.4 Codabar

Codabar is relatively early stage barcode developed by Monarch Marking Company in 1972 following 2 of 5 .

Codabar Overview

Following are the Codabar configuration.

Item	Overview
Character set	Numeric (0-9) Symbol $(-\$: /,+)$
Start / Stop code	A, B, C, or D
Digits	Variable length
CD (check digit) check method	Check digits are not much used in general.

Transfer data format

Start code 1 digit	Data Variable length	$C D$	Stop code 1 digit

- Setting items

Codabar (NW-7) read mode

Standard mode:
It consists of 1 barcode.

ABC mode:

$A B C$ is an acronym of American Blood Commission.
It consists of 2 side by side barcodes. (Margin is necessary.)
When the barcode's first stop character and the second start character is D, it will be concatenated and sent. Two D character will not be sent.

CX mode:

It consists of 2 side by side barcodes. (Margin is necessary.)
When the barcode's first stop character is C and the second start character is B , it will be concatenated and sent. B and C character will not be sent.

Codabar CD check

In Codabar, Modulus 16 is generally used.

Codabar CD transfer

Whether to transfer CD (check digit) or not is configurable.

Start / Stop code transfer

Whether to transfer start / stop code or not is configurable. Also, it can convert the code and transfers when transferring start / stop code.

Codabar option settings are as follows.

Code	Item	Command	Description	Default
Codabar	CD check	H7	Not check CD	\checkmark
		H6	Check CD	
	CD transmission	H8	Transmit Codabar CD	\checkmark
		H9	Not transmit Codabar CD	
	ST/SP transmission	F0	Not transmit Start / Stop code	\checkmark
		F1	Start / Stop code: ABCD/TN*E	
		F2	Start / Stop code: abcd/tn*e	
		F3	Start / Stop code: ABCD/ABCD	
		F4	Start / Stop code: abcd/abcd	
		HJ	Start / Stop code: <DC1><DC2><DC3><DC4> /<DC1><DC2><DC3><DC4>	
	Space insertion	HE	Disable space insertion	\checkmark
		HD	Enable space insertion	
	ABC, CX conversion	HA	Enable only Codabar normal mode	\checkmark
		H4	Enable only ABC code	
		H5	Enable only CX code	
		H3	Enable Codabar / ABC and CX	

6.3.5 Interleaved 2 of $\mathbf{5}$ and S-Code

Interleaved 2 of 5 is a symbol standardized by ISO/IEC 16390 as the standard distribution symbol ITF.

Interleaved 2 of 5 Overview

14901234567891
Following are the Interleaved 2 of 5 configurations.

Item	Overview
Character set	Numeric (0-9)
Start / Stop code	Hidden character
Digits	Variable length (even number)
CD (check digit) check method	Modulus 10 / Wait 3

Transfer data format

Data variable length	$C D$

- Setting items

Interleaved 2 of 5 CD check

Whether to check CD (check digit) or not is configurable. This setting also configures Interleaved 2 of 5 , Industrial 2 of 5, S-Code and Matrix 2 of 5 CD check or not.

Interleaved 2 of 5 CD transmit

Whether to transfer CD (check digit) or not is configurable. This setting also configures Interleaved 2 of 5, Industrial 2 of 5 , S-Code and Matrix 2 of 5 CD transfer or not.

Industrial 2 of 5 space check

Whether to enable / disable the space (inter-character gap) check of Industrial 2 of 5 which has large or irregular spaces can be set.

Following are the Interleaved 2 of 5 and Industrial 2 of 5 optional setting.

Code	Item	Command	Description	Default
Interleaved 2 of 5 S-Code	CD check	CD transmission	G0	Not check CD
		Check CD	\checkmark	
	Space check	E1	Transmit CD	Not transmit CD
	GK	Disable space check for Industrial 2 of 5		
	GJ	Enable space check for Industrial 2 of 5	\checkmark	
	S-Code conversion	GH	Not transmit S-Code as Interleaved 2 of 5	\checkmark
	GG	Transmit S-Code as Interleaved 2 of 5		

6.3.6 Code128

Code128 is developed by Computer Identix Inc. in the USA in 1981.
Code128 is a symbol standardized as USS-CODE128. Because it can encode ASCII128 characters, it is called Code128.

Code128 Overview

Following are the Code128 configuration.

Item	Overview
Character set	ASCII128 character Function character (FNC1-4) Code set selection character (A, B, C and Shift)
Start / Stop code	Hidden character Start pattern 3 types (A,B and C), Stop pattern 1type
Digits	Variable length
CD (check digit) check method	Modulus 103

Transfer data format
Data (variable length)

- Setting items

GS1 conversion

Disable / Enable GS1-128 GS1 conversion is configurable.
Refer to 6.2.1 for setting detail.

Concatenation of Code 128

When Code128 data's leading is FNC2 character, concatenate or not can be set.
Reading the barcode that contains FNC2 character in leading of Code128 data, concatenate the data by omitting the leading FNC2.
When reading the barcode that does not contains FNC2 character in leading of Code128, it concatenates the data to the end of data that is buffering to the reader, and send entire buffer. The reading time is updated every time 1 label is read, but if the reading is not completed within the reading time, the buffered data will be discarded.
The maximum number of character that can be concatenated at a time is 400 characters.
Following are the Code 128 optional setting.

Code	Item	Command	Description	Default
Code 128	GS1 conversion	OF	Disable GS1-128	\checkmark
		JF	Enable GS1-128 only	
		OG	Enable GS1-128 if possible	
	Concatenation	MP	Disable concatenation	\checkmark
		MO	Enable concatenation	

6.3.7 IATA

Code	Item	Command	Description	Default
IATA		4 H	Not check CD	\checkmark
		4 I	Check FC / SN only	
		4 J	Check FC / CPN / SN	
		4 K	Check FC / CPN / AC / SN	
	CD transmission	4 M	Not transmit CD	\checkmark
		4 L	Transmit CD	

6.3.8 MSI/Plessey

Code	Item	Command	Description	Default
MSI/ Plessey	CD check	4A	Not check CD	
		4B	Check 1 CD = MOD 10	\checkmark
		4C	Check 2 CD = MOD 10/MOD 10	
		4D	Check 2 CD = MOD 10/MOD 11	
		4R	Check 2 CD = MOD 11/MOD 10	
		4S	Check 2 CD = MOD 11/MOD 11	
	CD transmission	4G	Not transmit CD	
		4E	Transmit CD 1	\checkmark
		4F	Transmit CD 1 and CD 2	

6.3.9 UK/Plessey

Code	Item	Command	Description	Default
UK/ Plessey	CD transmission	40	Not transmit CD	
		4 N	Transmit CD	\checkmark
	Space insertion	DO	Disable space insertion	\checkmark
		DN	Enable space insertion	
	X conversion	DP	Conversion A -> X disable	\checkmark
		DQ	Conversion A -> X enable	

6.3.10 Telepen

Code	Item	Command	Description	Default
Telepen	Conversion output mode	D2	Numeric mode	\checkmark
	D3	ASCII mode		

6.3.11 Code 11

Code	Item	Command	Description	Default
Code 11	CD check	$[B L F$	Not check CD	
		$[B L G$	Check 1CD	
		$[B L H$	Check 2CD	
		$[B L I$	Check auto 1 or 2 CD	\checkmark
	CD transmission	$[B L J$	Not transmit CD	
		$[B L K$	CD transmit	

6.3.12 Korean Postal Authority

Code	Item	Command	Description	Default
Korean Postal Authority code	CD transmission	${ }^{*}+$	CD transmit	
		${ }^{*}-$	Not transmit CD	\checkmark
		${ }^{*}$.	Transmit dash	Not transmit dash

6.3.13 GS1 DataBar

GS1 DataBar (formerly RSS) is a symbol developed close to GS1, and has 3 types 7 kinds and is a relatively new symbol. GS1 DataBar has characteristics of being able to express it in a smaller space. It is a symbol standardized by ISO/IEC 24724:2011.

GS1 DataBar Overview

|||||||||||||||||||||||
0117834783468340
Following are the GS1 DataBar configuration.

Item	Overview
Character set	GS1 DataBar Omnidirectional and GS1 DataBar Limited: Numeric (0-9) GS1 DataBar Expanded: capital / small character alphabet, numbers, 20 types symbol, function character (FNC1)
Digits	GS1 DataBar Omnidirectional and GS1 DataBar Limited: Application identifier "01" and 14 digits GS1 DataBar Expanded: number 74 digits and alphabet 41 digits
Check sum	Check sum is always checked, but not sent. GS1 DataBar Omnidirectional: Modulus 79 GS1 DataBar Limited: Modulus 89 GS1 DataBar Expanded: Modulus 211
CD check	GS1 DataBar Omnidirectional and GS1 DataBar Limited: Modulus 10/ Wait 3

Transfer data format (GS1 DataBar Omnidirectional, GS1 DataBar Limited)

AI "01"	Data (13 digits)	CD (1 digit)

Transfer data format (GS1 DataBar Expanded)
Data (1-74 digits)

- Setting items

GS1 conversion

Disable / Enable GS1 DataBar's GS1 conversion is configurable.
Refer to 6.2.1 for setting detail.

6.3.14 Composite GS1 DataBar

Composite GS1 symbol is a code developed by GS1 for medical use and standardized by ISO/IEC 24723. Indicate symbol composite to GS1 DataBar, GS1-128 and UPC/EAN. In the market, other than Composite GS1 DataBar is not much used.

Composite GS1 DataBar Overview

```
(17) 201607 (10) ABCCA
```



```
(01) 14512345678903
```

Following are the Composite GS1 configuration.

Item	Overview
Character set	ASCII value 0-127 (ISO 646) ASCII value 128-255 (ISO 8859, Alphabet No.1, Extend ASCII) Using ECI: many other character sets
Composite	CC-A is a revised version of MicroPDF417. CC-B is normal MicroPDF417. CC-C is normal PDF417.
Maximum digits	CC-A: 56 character CC-B: 338 character CC-C: 2361 character
Symbol size	1D part: refer to GS1 DataBar and UPC/EAN Composite part: CC-A and CC-B are same as MicroPDF417. CC-C is same as PDF417
Error correction	1D part: error detection only Composite par: Reed Solomon error correction
Link flags	GS1 DataBar and GS1 128 composite have link flags. UPC/EAN composite does not have link flags.

Transfer data format (CC-A)

1D data (1-74 digits)	Composite data (1-56 digits)		
Transfer data format (CC-B)			
1D data (1-74 digits) Composite data (1-338 digits) Transfer data format (CC-C) 1D data (1-74 digits) Composite data (1-2361 digits)			
:---			

- Setting item

GS1 conversion

Disable/enable GS1 conversion of Composite GS1 DataBar by setting.
Refer to 6.2.1 for details.

6.3.15 PDF 417

PDF417 is a stack type code developed by Symbol Technology Inc., and is used for international logistics, ID card (overseas) and parts label etc. PDF417 is a symbol standardized also in ISO/IEC 15438:2006.

PDF417 Overview

Following are the PDF417 configuration.

Item	
Character set	ASCII value 0-127 (ISO 646) ASCII value 128-255 (ISO 8859-1, Alphabet No.1, Extended ASCII) For MicroPDF 417: many other character sets
Maximum digits (PDF417)	Text compression: 1850 character Byte compression: 1108 character Numeric compression: 2710 character
Maximum digits (MicroPDF417)	Text compression: 250 character Byte compression: 150 character Numeric compression: 366 character
Symbol size (PDF417)	Number of lines: 3-90 Number of rows: 1-30
Symbol size (MicroPDF417)	Number of lines: 4-44 Number of rows: 1-4
Error correction (PDF417)	Error correction level 8. The option for error detection only.
Error correction (MicroPDF417)	Number of code words for error correction is fixed by the symbol and cannot be changed.

Transfer data format

Data (variable length)

- Setting item

MicroPDF417, default is invalid.
To enable the setting, refer to 6.1.5.

6.3.16 QR Code

QR code is a matrix type 2D barcode developed by DENSO WAVE INC., and has characteristics of high speed reading and is used in a wide range of fields. QR code is a symbol standardized to SO/IEC 18004:2000.

QR Code Overview

Following are the QR code configuration.

Item	Overview
Character set	1) Numeric data (Numbers 0-9) 2) Alphanumeric data (Numbers 0-9, Capital letter A-Z, 9 special characters: space, \$, \%, *, +, -, ., /, :) 3) 8 bit byte data (Latin character based on JIS X 0201, character set of 8 bit code for Katakana character.) 4) Chinese character (Character specified by the shift-coded expression of JIS X 0208)
Maximum digits	Alphanumeric data: 4296 character 8 bit data: 2953 character Numeric data: 7089 character Chinese character data: 1817 character
Symbol size	Minimum: 21×21 module Maximum: 177×177 module
Error correction	Reed Solomon error correction level 4 L:7\% M:15\% Q:25\% H:30\%
Negative barcode, mirror printing	Negative and mirror printed QR code are readable.
Concatenated code	Outputs after reading all concatenated codes.

Transfer data format

Data (variable length)

- Setting item

GS1 conversion
Disable/enable GS1 QR code conversion by setting.
Refer to 6.2.1 for setting detail.

ECI protocol output

Enable/disable output of QR code ECI protocol data by setting.
Refer to 6.2 .5 for setting detail.

Micro QR code overview

回逶
 至完
 Micro QR

Following are the Micro QR code configuration．

Item	Overview
Character set	1）Numeric data（numbers 0－9） 2）Alphanumeric data（numbers 0－9，capital characters A－Z， 9 special characters：space，\＄，\％，＊，＋，－，．，／，：） 3） 8 bit byte data（Latin character based on JIS X 0201，character set of 8 bit code for Katakana character．） 4）Chinese character（Character specified by the shift－coded expression of JIS X 0208）
Maximum digits	Alphanumeric data： 21 character 8 bit data： 15 character Numeric data： 35 character Chinese character data： 9 character
Symbol size error correction	Version PR－111 x 11 module－Error detection only Version M2： 13×13 module－Reed Solomon error correction 2 steps（L，M） Version M3： 15×15 module－Reed Solomon error correction 2 steps（L，M） Version M4： 17×17 module－Reed Solomon error correction 3 steps（L，M，Q）
Negative barcode， mirror printing	Negative and mirror printed QR code are readable

Transfer data format
Data（variable length）

－Setting item

None in particular

6.3.17 Data Matrix

Data Matrix is a matrix type 2D barcode developed by Idymatrix Corporation, which has characteristics of L-shaped finder and a symbol capable of miniaturizing. It is mainly used for industrial, and is used in a wide range of fields at overseas. Data Matrix is a symbol standardized also in ISO/IEC 16022.

Data Matrix Code Overview

Following are the Data Matrix configuration.

Item	Overview
Character set	ASCII value 0-127 (ISO 646) ASCII value 128-255 (ISO 8859-1, Alphabet No.1, Expand ASCII) Using ECI: many other character sets
Maximum digits (ECC200 square)	Alphanumeric data: 2335 characters 8 bit data: 1556 characters Numeric data: 3116 characters
Maximum digits (ECC200 rectangle)	Alphanumeric data: 98 characters 8 bit data: 47 characters Numeric data: 72 characters
Symbol size (ECC200)	Even rows and even columns, square or rectangle, Square: minimum 10 $\times 10$, maximum 144×144 module Rectangle: minimum 8 $\times 18$, maximum 16×48 module (6 patterns)
Error correction (ECC200)	Set automatically
Negative barcode, mirror printing	Negative and mirror printed Data Matrix are readable

Transfer data format

Data (variable length)

- Setting item

GS1 conversion

Disable/enable GS1 Data Matrix conversion by setting.
Refer to 6.2.1 for setting detail.

ECI protocol output

Enable/disable output of Data Matrix ECI protocol data by setting.
Refer to 6.2 .5 for setting detail.

6.3.18 Aztec Code

Azetc Code is a matric type 2D barcode developed by Welch Allyn Company, and has characteristic of quiet zone unnecessary by fender in the center. Mainly used in tickets and medicals.

Aztec Code Summary

$$
\underset{\text { Aztec code }}{\substack{\text { 稚 }}}
$$

Following are the Aztec configuration.

Item	Overview
Character set	ASCII value 0-127 (ISO 646) ASCII value 128-255 (ISO 8859-1, Alphabet No.1, Expand ASCII) Using ECI: many other character sets
Maximum number of digits	Alphanumeric data: 3067 characters Number: 3832 characters Byte: 1914 character
Symbol size	Minimum: 15 x 15 module Maximum: 151 x 151 module
Error correction	The selectable error correction level is 5\% to 95\% of the data area.

Transfer data format
Data (variable length)

- Setting item

ECI protocol output

Enable/disable output of Aztec Code ECI protocol data by setting.
Refer to $\underline{6.2 .5}$ for setting detail.

6.4 Setting of Number of Characters

If you are going to read codes of fixed length, it is recommended to configure the reader for that fixed number of characters. The reader will verify that codes read are of the correct length and rejects codes that do not have the specified length. The advantage of setting a fixed length is that it provides protection against spurious short scans of codes, possible with code types that do not provide sufficient security against partial scans (e.g. Interleaved 2 of 5). The length checking is done on the code data and is not affected by options such as (not) transmit start/stop character or check digit. Setting the number of characters does not affect fixed length codes, such as EAN-13.

6.4.1 Fixed Length ON, Minimum / Maximum Length for Selected Codes

This option enables fixed length and minimum / maximum length checking for each code types and will only affect the specified code types.

Configuration with commands

Item	Command			Desault (valid range)			
Fixed length	Specify Code	Input length of digits		Fixed length for selected codes	$(0-8000)$		
	$\underline{6.4 .2}$	Qa	Qb	Qc	Qd	Length: $(1000 \mathrm{a}+100 \mathrm{~b}+10 \mathrm{c}+\mathrm{d})$	

Configuration example

Fix Code39 length to 6 digits
Fix Code39 length to 6 digits and 12 digits
Fix Code39 length to 6 digits and Interleaved 2 of 5 to 12 digits
Clear fixed length for Code39
Set minimum length for Interleaved 2 of 5 to 4 digits
Clear minimum length for Interleaved 2 of 5
Set maximum length for Code39 to 12 digits
Clear max length for Code39
Set max length for PDF417 to 20 digits and QR code 125 digits

Command
<ESC>[DC1Q6<CR>
<ESC>[DC1Q6[DC1Q1Q2<CR>
$<E S C>[D C 1 Q 6[D C 4 Q 1 Q 2<C R>$
<ESC>[DC1<CR>
$<E S C>[D B 4 Q 4<C R>$
<ESC>[DB4<CR>
<ESC>[DA1Q1Q2<CR>
<ESC>[DA1<CR>
<ESC>[DALQ2Q0[DAJQ1Q2Q5<CR>

6.4.2 Command List: Fixed Length ON/Minimum/Maximum Length

Enter the following command followed by a value to set length of each code.
When reset settings, the length currently set becomes the default.

Code type	Fixed length	Min length	Max length
Reset settings	[DC0	[XQG	[XNG
Code 39	[DC1	[DB1	[DA1
Codabar	[DC2	[DB2	[DA2
Industrial 2 of 5	[DC3	[DB3	[DA3
Interleaved 2 of 5	[DC4	[DB4	[DA4
Code 93	[DCD	[DBD	[DAD
Code 128	[DCB	[DBB	[DAB
MSI/Plessey	[DC8	[DB8	[DA8
IATA	[DC7	[DB7	[DA7
PDF417	[DCL	[DBL	[DAL
QR code	[DCJ	[DBJ	[DAJ
Data Matrix	[DCH	[DBH	[DAH
Maxi code	[DCK	[DBK	[DAK
Aztec code	[DCI	[DBI	[DAI
MicroPDF417	[DCM	[DBM	[DAM
RSS-Expanded (GS1 DataBar)	[DCF	[DBF	[DAF
Composite	[DCG	[DBG	[DAG
GS1-128	[DCC	[DBC	[DAC
S-Code	[DC5	[DB5	[DA5
UK/Plessey	[DCA	[DBA	[DAA
Matrix 2 of 5 / Chinese Post	[DC6	[DB6	[DA6
Telepen	[DC9	[DB9	[DA9
Codablock F	[DCO	[DBO	[DAO
Code 11	[DCE	[DBE	[DAE
Chinese Sensible Code	[DCN	[DBN	[DAN

7 String Options

This chapter describes the alterations which can be made to the transmitted data string.
The configurations available are:

7.1 Case Conversion

7.2 Prefix / Suffix

7.1 Case Conversion

The decoded data may be converted to either all lower case or all upper case or the case may be exchanged. These options may be used if the host requires upper or lower case characters only.

- Upper case / Lower case conversion example

Description	AbCd	Default
No case conversion	AbCd	\checkmark
Convert to upper case	ABCD	
Convert to lower case	abcd	
Exchange case	aBcD	

Upper case and Lower case can be set from following commands.

Items	Command	Description	Default
Case Conversion	YZ	No case conversion	\checkmark
	YW	Convert to upper case	
	YX	Convert to lower case	
	YY	Exchange case	

7.2 Prefix / Suffix (appending character function)

The following section explains the additional functions that can place informational characters just before the decoded data (pre-data) or be transmitted immediately after the data (post-data).

Output Format:

- Prefix / suffix (up to 4 digits)

Specified characters can be added in front of or at the end of the data for each specific symbology.
*1 By default, the prefix is empty and the suffix of all codes is a "CR" character.
*When using 6.2.6 OCR Free Edit or 8.2.5 Data Edit Reading, this cannot be set.

- Preamble / Postamble (up to 8 digits)

Specified characters can be added in front of or at the end of the data for all codes.
*By default, they are empty.

Preamble	Prefix for each code	Decoded Data	Suffix (*1) for each code	Postamble
Max 8 digits	Max 4 digits		Max 4 digits	Max 8 digits

*By default, <CR> is added to suffix with all codes "RZ" command.

Program Value:

- ASCII (Refer to 7.2.3)

All 128 characters

- Code identification

The code identification is transmitted in OPTICON ID, ISO15424 standard or AIM-ID.

- Code length

The code length is the number of characters after the output format that is configured with options in " 6.3 Setting of Code Specific Options".

- Scan time

The scan time is the time from pressing the function key until data output start.

7.2.1 Set Prefix / Suffix

How to add the prefix / suffix is described below.
Configuring with Command

Item	Command		Description	Default
Prefix/Suffix	Set commands	Value commands	Set character to Prefix/Suffix	All codes Suffix USB-HID: "Enter" USB-COM:"CR" RS-232C:"CR"
	7.2.2	ASCII: 7.2.3		
		Code ID: 7.2.4		
		Code Length: 7.2.5		
		Scan time: 7.2.6		

Example: to set "C39:" as the prefix and "CR" and "LF" as the suffix for Code 39.

Command: <ESC>M40CQ3Q96AO41M1J<CR>

*Prefix / Suffix can also be set with menu barcode or 2D menu code.
Note:

- The prefix and suffix setting commands clear the current values and configure new ones. The default suffix of CR is also cleared.
- Clearing the default suffix CR is possible by scanning the RZ menu code (Set suffix for all codes) without codes for the suffix or the PR menu code (Clear suffix).
- When the number of configured prefix / suffix characters exceeds the maximum limit (4 digits), the configuration will be ignored.

7.2.2 Command List: Settings of the Prefix / Suffix

Code	Prefix Command	Suffix Command
All codes Prefix / Suffix	RY	RZ

By default, "CR" ("Enter" for USB-HID) is added to the suffixes all code.
*To clear "CR" or "Enter", send "RZ" command only.
Following are the each code prefix / suffix setting command.

Code	Prefix Command	Suffix Command
UPC-A	N1	N6
UPC-A add-on	M0	O0
UPC-E	N2	N7
UPC-E add-on	M1	O1
EAN-13	N3	N8
EAN-13 add-on	M2	O2
EAN-8	N4	N9
EAN-8 add-on	M3	O3
Code 39	M4	O4
Tri-optic	MC	PN
Codabar	M5	O5
Industrial 2 of 5	M6	O6
Interleaved 2 of 5	M7	O7
S-Code	MB	OB
Matrix 2 of 5	GL	GM
Chinese Post Matrix 2 of 5	I8	I9
IATA	N0	N5
MSI/Plessey	L8	L9
Telepen	MA	OA
UK/Plessey	M9	O9
Code 128	[XMX	[XOX
GS1-128	[BLD	1 BLE
Code 11	*\$	*\%
Korean Postal Authority		

Code	Prefix Command	Suffix Command
Intelligent Mail Barcode	[D51	[D5J
POSTNET	[D6D	[D6E
PLANET	[DG5	[DG6
Japan Postal	[D5S	[D5T
Netherlands Kix Code	[D5N	[D50
UK Postal (Royal Mail)	[DGA	[DGB
4-state Mailmark barcode	[DGV	[DGW
Australian Postal	[D6P	[D6Q
GS1 DataBar	OE	PQ
GS1 DataBar	[D6G	[D6J
GS1 DataBar Limited	[D6H	[D6K
GS1 DataBar Expanded	[D61	[D6L
GS1 Composite code	RR	RS
Codablock F	[D4S	[D4T
Data Matrix	MD	PO
Aztec	[BF0	[BF1
Chinese Sensible Code	[D4N	[D4O
QR Code	MK	PW
Maxi Code	ML	PX
PDF417	OC	PY
MicroPDF417	OD	PZ
Machine Readable Passports	[DJJ	[DJP
Machine Readable Visas-A	[DJK	[DJQ
Machine Readable Visas-B	[DJL	[DJR
Official Travel Documents 1	[DJM	[DJS
Official Travel Documents 2	[DJN	[DJT
ISBN	[DJO	[DJU

To add to preamble / postamble, use the following command.

Code	Preamble Command	Postamble Command
Preamble / Postamble	MZ	PS

7.2.3 ASCII (Prefix / Suffix Values)

ASCII	Command	ASCII	Command	ASCII	Command	ASCII	Command
<SPACE>	5A	A	OA	a	\$A	^@ (NULL)	9G
!	5B	B	OB	b	\$B	\wedge A (SOH)	1A
"	5C	C	OC	c	\$C	$\wedge \mathrm{B}$ (STX)	1B
\#	5D	D	OD	d	\$D	${ }^{\wedge} \mathrm{C}$ (ETX)	1 C
\$	5E	E	OE	e	\$E	$\wedge \mathrm{D}$ (EOT)	1D
\%	5F	F	OF	f	\$F	$\wedge E$ (ENQ)	1E
\&	5G	G	OG	g	\$G	${ }^{\wedge} \mathrm{F}$ (ACK)	1F
'	5H	H	OH	h	\$H	$\wedge \mathrm{G}(\mathrm{BEL})$	1G
$($	51	1	01	i	\$	$\wedge \mathrm{H}(\mathrm{BS})$	1H
)	5 J	J	0 J	j	\$	$\wedge 1(H T)$	11
*	5K	K	OK	k	\$K	$\wedge J(\mathrm{LF})$	1 J
+	5L	L	OL	1	\$L	$\wedge \mathrm{K}$ (VT)	1K
,	5M	M	OM	m	\$M	$\wedge \mathrm{L}$ (FF)	1L
-	5N	N	ON	n	\$N	$\wedge \mathrm{M}$ (CR)	1M
.	50	0	00	0	\$0	\wedge (SO)	1 N
1	5P	P	OP	p	\$P	$\wedge \mathrm{O}$ (SI)	10
:	6A	Q	OQ	q	\$Q	$\wedge P$ (DLE)	1 P
;	6B	R	OR	r	\$R	$\wedge \mathrm{Q}(\mathrm{DC} 1)$	1Q
<	6 C	S	OS	s	\$S	$\wedge \mathrm{R}$ (DC2)	1R
=	6D	T	OT	t	\$T	\wedge ^ (DC3)	1 S
>	6 E	U	OU	u	\$U	$\wedge \mathrm{T}$ (DC4)	1 T
?	6 F	V	OV	v	\$V	\wedge (NAK)	1 U
@	6G	W	OW	w	\$W	$\wedge \mathrm{V}$ (SYN)	1V
[7A	X	OX	x	\$X	\wedge ^ (ETB)	1W
1	7B	Y	OY	y	\$Y	$\wedge \times(\mathrm{CAN})$	1X
]	7 C	Z	OZ	z	\$Z	${ }^{\wedge} \mathrm{Y}$ (EM)	1 Y
\wedge	7D	0	Q0			$\wedge \mathrm{Z}$ (SUB)	12
-	7E	1	Q1			\wedge [(ESC)	9 A
,	7F	2	Q2			$\wedge(F S)$	9 B
\{	9 T	3	Q3			${ }^{\wedge}$] (GS)	9 C
1	9 U	4	Q4			$\wedge \wedge$ (RS)	9 D
\}	9 V	5	Q5			\wedge ^(US)	9 E
~	9W	6	Q6			DEL (ASCII127)	9 F
		7	Q7				
		8	Q8				
		9	Q9				

7.2.4 Code ID

Code ID can be added by sending following command continue to the prefix / suffix setting command.

Item	Command	Description	Default
Code identification	$\$ 2$	Code identification using OPTICON ID	
	$\$ 1$	Code identification using AIM ID/ ISO 15424	

There are two ways of adding Code ID as follows.

- OPTICON Code ID: (Refer appendix 9.1.1)
- AIM/ISO Code ID: (Refer appendix 9.1.2)

The code identifier is transmitted in ISO 15424 format.]cm

-] is ASCII value, decimal 93
- C is code character
- m is modifier character

Example) Add "<OPTICON Code ID>" to the all codes prefix.
Configuring with Command:
<ESC>RY\$2<CR>

7.2.5 Code Length

For 1D codes the code length is transmitted as 2 digits, excluding prefix and suffix characters. For 2D codes the code length is transmitted as 6 digits. It is also possible to send the length as 6 digits for both 1 D and 2 D codes. These direct input characters count as 1 entry of the 4 permissible entries for a prefix and suffix.

Code length can be added by sending following command continue to the prefix / suffix setting command.

Item	Command	Description	Default
Code length value	$\$ 3$	Code length (1D/2D: $2 / 6$ digit)	
	$\$ 6$	Code length (1D/2D: $6 / 6$ digit)	

Example: Set the prefix for all codes to <Code length (1D/2D: 2/6 digit)>:
Configuring with Command:
<ESC>RY\$3<CR>

7.2.6 Scan Time

The scan time is the time from pressing the function key until data output start.

Item	Command	Description	Default
Scan time value	[EDG	Scan time	

8 Read Options

This chapter describes the read options for the reader.

8.1 Read Setting

8.2 Auto Trigger Setting

8.1 Read Setting

8.1. 1 Double Read Reset Time

This allows setting of time interval before the same code can be decoded again in auto trigger mode. When a code with different data is read, this will be reset.

Item	Command				Description	Default (valid range)	
Double read reset time	$[\mathrm{D} 3 \mathrm{R}$	Qa	Qb	Qc	Qd	Double read reset time $(1000 \mathrm{a}+100 \mathrm{~b}+10 \mathrm{c}+\mathrm{d})[10 \mathrm{~ms}]$	1000 ms $(0-9999)$

*When 0 second is set, the same code will not be decoded.

8.2 Auto Trigger Setting

The reader operates with auto trigger which start reading by detecting image when holding the target.

8.2.1 Auto Trigger Sensitivity

The detection sensitivity can be adjusted. The sensitivity varies with the ambient environment and adjustment may be necessary.

Item	Command	Description	Default
Auto trigger sensitivity	$[\mathrm{XMF}$	Sensitive	\checkmark
	$[\mathrm{XMH}$	Normal	
	$[\mathrm{XMJ}$	Insensitive	

8.2.2 Auto Trigger Sleep Mode

When nothing is detected after a specific configurable period while in auto trigger mode, the reader goes into sleep mode. The reader performs presence detection at specified time intervals in sleep mode and when a target is detected or any event such as trigger occurs, the unit exits from sleep mode. Setting a time of 0 seconds means that sleep mode is disabled.

Item	Command			Description		Default (valid range)	
Auto trigger sleep mode	[EBW	Qa	Qb	Qc	Qd	Transition time to sleep mode $(1000 \mathrm{a}+100 \mathrm{~b}+10 \mathrm{c}+\mathrm{d})[\mathrm{s}]$	0 s $(0-9999)$

8.2.3 Read Time

Read time setting sets the reading time of 1 reading operation. After trigger signal is on, or when the readout command "Z" is sent, readout operation starts. If no data outputted within the specified time, the readout operation stops.

Item	Command	Description	Default	Remark
Read time setting	Yo	Auto		*
	Y1	1 second		
	Y2	2 seconds		
	Y3	3 seconds		
	Y4	4 seconds		
	Y5	5 seconds	\checkmark	
	Y6	6 seconds		
	Y7	7 seconds		
	Y8	8 seconds		
	Y9	9 seconds		
	YM	Read time infinite		
	YL	Read time 10 times		

"When auto trigger with " $Y 0$ ", read time is automatically set by the image processing.
The time to end the auto trigger scanning can be adjusted.

Item	Command	Description	Default
Auto trigger read time adjustment	$[\mathrm{EFH}$	Long time	
	$[\mathrm{EFI}$	Normal	\checkmark
	$[\mathrm{EFJ}$	Short time	

8.2.4 Batch Reading

When reading fixed format code in a batch, setting is available from the UniversalConfig batch reading function.

From following table, up to 4 codes batch reading can be set.

*Please contact to sales offices if there are items cannot be set with above.

8.2.5 Data Edit Function

Data edit script programming is a form of data output formatting so the user may change the scanned data to a format that is more desirable to be output This data edit script programming is integrated into the software of the reader. The UniversalConfig utility has some support for Data Editing, but it is an advance language and may need extra support. Please contact technical support or your sales office for more information on this.

9 Appendix

This chapter lists the reference data.

9.1 Code ID Table

9.2 PR-11 Specification Overview

9.3 Sample Codes

9.1 Code ID Table

Following are the Code ID to be added to the prefix / suffix.

9.1.1 Opticon Code ID prefix / suffix value

Code	Code ID	Code	Code ID
UPC-A	C	Code 11	b
UPC-A +2	F	Code 128	T
UPC-A +5	G	GS1-128	
UPC-E	D	GS1 DataBar	y
UPC-E +2	H	$\begin{aligned} & \mathrm{CC}-\mathrm{A} \\ & \mathrm{CC}-\mathrm{B} \\ & \mathrm{CC}-\mathrm{C} \end{aligned}$	m
UPC-E +5	I		n
EAN-13	B		I
EAN-13 +2	L	Korean Postal Authority	C
EAN-13 +5	M	Intelligent mail	0
EAN-8	A	Postal-TNT, KIX	1
EAN-8 +2	J	Japan postal	2
EAN-8 +5	K	Postnet	3
Code 39	V	Australia postal code	4
Code 39 Full ASCII	W	US Planet	6
Italian Pharmaceutical	Y	UK Postal (Royal mail)	7
Codabar	R	4-state Mailmark barcode	8
Codabar ABC	S	Codablock F	E
Codabar CX	f	Data Matrix	t
Industrial 2 of 5	0	Aztec	0
Interleaved 2 of 5	N	Aztec Runes	
S-Code	g	Chinese Sensible Code	e
Matrix 2 of 5	Q	QR Code	u
Chinese Post	w	Micro QR Code	j
Code 93	U	Maxi Code	V
IATA	P	PDF417	r
MSI/Plessey	Z	MicroPDF417	S
Telepen	d	ICAO Travel Documents (OCR)	9
UK/Plessey	a	ISBN and Other OCR Font B	z

9.1.2 Code Option AIM / ISO15424 Code ID prefix / Suffix value

AIM/ISO15424 Code ID			
Symbology	Code ID	Symbology	Code ID
UPC-A]E0	Telepen]B*
UPC-A +2]E3	UK/Plessey	JP0
UPC-A +5]E3	Code 128]C0
UPC-E]E0	GS1-128]C1
UPC-E +2]E3	Code 93]G0
UPC-E +5]E3	Code 11	JH*
EAN-13]E0	Code]X0
EAN-13 +2]E3	Korean Postal Authority]X0
EAN-13 +5]E3	Intelligent Mail Barcode]X0
EAN-8]E4	POSTNET]X0
EAN-8 +2]E7	GS1 DataBar]e0
EAN-8 +5]E7	CC-A]e1
Code 39	J ${ }^{*}$	CC-B]e1
Code 39 Full ASCII	JA*	CC-C]e1
Tri-Optic]X0	GS1 DataBar with CC-A]e0
Code 39 It. Pharmaceutical]X0	GS1 DataBar with CC-B]e0
Codabar	JF*	GS1 DataBar with CC-C]e0
Codabar ABC]F*	Codablock F	J ${ }^{*}$
Codabar CX]X0	DataMatrix]d*
		Aztec]z*
Interleaved 2 of 5] ${ }^{*}$]X0
S-Code]X0	QR Code	JQ*
Matrix 2 of 5]X0	Micro QR Code	JQ*
Chinese Post]X0	Maxi Code	JU*
IATA	JR*	PDF417]L0
S/Ples]M*	MicroPDF417]L0
Ms/Pessey]X0	OCR]X0

[^4]| Code option | JAIM-ID | Code option | JAIM-ID |
| :---: | :---: | :---: | :---: |
| Code 39 option AIM/ISO15424 Code ID : A* | | | |
| Normal Code 39 (D5)
 Not check CD (C1)
 Transmit CD (D9) | JAO | Full ASCII Code 39 (D4) or Full ASCII Code 39 if pos. (+K) Not check CD (C1) Transmit CD (D9) |]A4 |
| Normal Code 39 (D5)
 Check CD (C0)
 Transmit CD (D9) |]A1 | Full ASCII Code 39(D4) or Full ASCII Code 39 if pos. (+K) Check CD (C0) Transmit CD (D9) |]A5 |
| Normal Code 39 (D5)
 Not check CD (C1)
 Not transmit CD (D8) |]A2 | Full ASCII Code 39(D4) or Full ASCII Code 39 if pos. (+K) Not check CD (C1) Not transmit CD (D8) |]A6 |
| Normal Code 39 (D5)
 Check CD (CO)
 Not transmit CD (D8) |]A3 | Full ASCII Code 39(D4) or Full ASCII Code 39 if pos. (+K) Check CD (C0) Not transmit CD (D8) |]A7 |
| Codabar option AIM/ISO15424 Code ID : F^{*} | | | |
| Codabar normal mode (HA)
 Not check CD (H7)
 Transmit CD (H8) |]F0 | Codabar normal mode(HA)
 Not check CD (H7)
 Not transmit CD (H9) |]F4 |
| Codabar ABC (H4) or (H3)
 Not check CD (H7)
 Transmit CD (H8) |]F1 | Codabar ABC (H4) or (H3)
 Not check CD (H7)
 Not transmit CD (H9) |]F5 |
| Codabar normal mode (HA)
 Check CD (H6)
 Transmit CD (H8) |]F2 | Codabar normal mode (HA)
 Check CD (H6)
 Not transmit CD (H9) |]F6 |
| Codabar ABC (H4) or (H3)
 Check CD (H6)
 Transmit CD (H8) |]F3 | Codabar ABC (H4) or (H3)
 Check CD (H6)
 Not transmit CD (H9) |]F7 |
| Interleaved 2 of 5 option AIM/ISO15424 Code ID : I* | | | |
| Not check CD (G0)
 Transmit CD (E0) |]10 | Not check CD (G0)
 Not Transmit CD (E1) |]12 |
| Check CD (G1)
 Transmit CD (E0) |]11 | Check CD (G1)
 Not Transmit CD (E1) |]13 |

Code option	JAIM-ID	Code option	JAIM-ID
IATA option AIM/ISO15424 Code ID : R*			
Not check CD (4H) Transmit CD (4L)]R0	Not check CD (4H) Not transmit CD (4M)]R2
Check FC and SN only (4I) or Check CPN,FC and SN (4J) or Check CPN,AC,FC and SN (4K) Transmit CD (4L)]R1	Check FC and SN only (4I) or Check CPN,FC and SN (4J) or Check CPN, AC, FC and SN (4K) Not transmit CD (4M)]R3
MSI/Plessey option AIM/ISO15424 Code ID : M / X0			
Check 1CD = MOD 10 (4B): (4B) + Transmit CD1 (4E) or (4B) + Not transmit CD (4G) or (4B) + Transmit CD1 and CD2 (4F)]M0]M1]X0	Check 2CD's = MOD 10/MOD 11 (4D): (4D) + Transmit CD1 (4E) or (4D) + Not transmit CD (4G) or (4D) + Transmit CD1 and CD2 (4F)]X0
Check 2CD's = MOD 10/MOD 10 (4C): (4C) + Transmit CD1 (4E) or (4C) + Not transmit CD (4G) or (4C) + Transmit CD1 and CD2 (4F)]X0	Check 2CD's = MOD 11/MOD 10 (4R): (4D) + Transmit CD1 (4E) or (4D) + Not transmit CD (4G) or (4D) + Transmit CD1 and CD2 (4F)]X0
Telepen option AIM/ISO15424 Code ID : B*			
Telepen (numeric or ASCII only): ASCII mode (D3) Numeric mode (D2)	$\begin{aligned} & \text { jB0 } \\ & \text { jB1 } \end{aligned}$	Telepen (numeric followed by ASCII): ASCII mode (D3) Numeric mode (D2)	$\begin{aligned} & \text { JB0 } \\ & \text { jB2 } \end{aligned}$
Telepen (ASCII followed by numeric) (not supported): ASCII mode (D3) Numeric mode (D2)	$\begin{aligned} & \text { jB0 } \\ & \text { jB2 } \end{aligned}$		
Code 11 option AIM/ISO15424 Code ID : $\mathrm{H}^{*} / \mathrm{X} 0$			
Check 1CDs (BLG) or Check auto 1 or 2CDs (BLI) (length > 12) Transmit $\mathrm{CD}_{(\mathrm{S})}$ (BLK)]H0	Check 1CDs (BLG) or Check 2CDs (BLH) or Check auto 1 or 2CDs (BLI) (length > 12) Not Transmit $\mathrm{CD}_{(\mathrm{S})}$ (BLJ)]H3
Check 2CDs (BLH) or Check auto 1 or 2CDs (BLI) (length > 12) Transmit $\mathrm{CD}_{(\mathrm{S})}$ (BLK)]H1	Not check CD (BLF) Not transmit CD (BLJ)]X0
Codablock F option AIM/ISO15424 Code ID : O*			
FNC1 not used]O4	FNC1 in 1st position	1 O 5

| Code option | JAIM-ID | Code option | JAIM-ID |
| :--- | :---: | :--- | :--- | :---: |
| DataMatrix options AIM/ISO15424 Code ID: d* | Jd4 | | |
| ECC200 | Jd1 | ECC200, supporting ECI protocol | Jd5 |
| ECC200, FNC1 IN 1st or 5th position | Jd2 | ECC200,FNC1 in 1st or 5th position
 and supporting ECI protocol | Adec options AIM/ISO15424 Code ID: z* |

9.2 PR-11 Specification Overview

PR-11 specifications overview is as follows.

9.2.1 Common Specification Overview

Item			Specification		Note
	CPU		CPU:ARM Cortex-A7 Core: 800 MHz		
	LPDDR2 RAM		1G bits		DDRCLK:400 MHz
	Flash ROM		1G bits Flash Memory		
	RS-232C		300 bps to 115200 bps		Default: 9600 bps
	USB		Full Speed 12 Mbps (HID/COM)		
$\stackrel{\rightharpoonup}{\circ}$	LED		3 colors LEDs 2 places		Placed Inside the housing
	Speaker		Loudness / tone adjustable		
	Scanning method		Monochrome CMOS area sensor		Frame rate: 120 fps
	Effective pixels		1 million pixels (H : $1280 \times \mathrm{V}$: 800)		
	Aiming light source		2 Warm white LEDs		
	Scan area		Approx. 82.7 (D) $\times 125$ (W) mm		Distance: 0 mm (On scan window)
O	Symbologies		MRTD comply to ICAO Doc 9303 standard (Passport, Visa-A/B, Official Travel Documents1/2)		
	Target character		OCR-font B size 1 Numeric: 0-9, Alphabet: A-Z (capital), Symbol: <		
Supported 1D Symbologies	Symbologies	1D	UPC-A, UPC-E, UPC-A Add-on, UPC-E Add-on, EAN-13, EAN-8, EAN-13 Add-on/EAN-8 Add-on, JAN-13, JAN-8, Code 39, Codabar (NW-7), Industrial 2 of 5, Interleaved 2 of 5, Code 93, Code 128, GS1-128, MSI/Plessey		
		Postal	Japan Postal, Intelligen POSTNET, PLANET, UK Postal, Australian Authority code	Mail Barcode, herlands KIX Code, tal, Korean Postal	
	Minimum resolution		Code 39 : 0.127 mm		PCS 0.9
	Depth of field	UPC/EAN	Resolution (0.33 mm)	$0-50 \mathrm{~mm}$	

Item			Specification		Note
00$\stackrel{0}{\square}$0$\frac{3}{3}$$\frac{0}{0}$$\stackrel{0}{0}$$\stackrel{0}{0}$	Symbologies		GS1 DataBar, GS1 DataBar Limited, GS1 DataBar Expanded, Composite GS1 DataBar, Composite GS1-128, Composite EAN, Composite UPC		GS1 DataBar: formerly called "RSS"
	Minimum resolution		GS1 DataBar Composite Code	.254 mm 254 mm	PCS 0.9
	Symbologies		PDF417, MicroPDF417, Codablock F, QR Code , Micro QR Code, DataMatrix (ECC 200), MaxiCode, Aztec Code, Chinese Sensible Code		Disable Code 128 when Codablock F is enabled.
	Minimum resolution (mm)		QR Code $: 0.381 \mathrm{~m}$ Data Matrix $: 0.381 \mathrm{~m}$		PCS 0.9
	Depth of field (mm)	QR Code	Resolution (0.381 mm)	$0-30 \mathrm{~mm}$	
	Image data format		Windows Bitmap, JPEG		
	Shades of gray		1024, 256, 16, 2		
	Range of output image		Select top/bottom (column) and left/right (row)		
	Resolution of output image		Full, 1/2, 1/4		
	Interface of output image		RS-232C, USB-COM		
	Baud rate		USB-COM (full speed)	About 12 sec	Resolution: Full
			RS-232C (baud rate: 115200 bps)	About 160 sec	

Item				Specification	Note
OO¢	Range of operating voltage		$4.5-5.5 \mathrm{~V}$		RS-232C: Dedicated AC adapter $5.0 \mathrm{~V} \pm 5 \%$
	Current consumption	Reading	USB	350mA (Typ)	Ambient temperature: $25^{\circ} \mathrm{C}$ Power supply voltage: 5 V
			RS-232C	345mA (Typ)	
		Auto trigger Standby	USB	190mA (Typ)	
			RS-232C	185mA (Typ)	
	Temperature	Operating	-5 to $45^{\circ} \mathrm{C}$		AC adapter 0 to $40^{\circ} \mathrm{C}$
		Storage	-30 to $60^{\circ} \mathrm{C}$		AC adapter -20 to $85^{\circ} \mathrm{C}$
	Humidity	Operating	10 to 90% (no condensing, no frost)		
		Storage	10 to 90\% (no condensing, no frost)		
	Ambient light immunity	Fluorescent	10,000 lx or less		
		Sunlight	100,000 lx or less		
	Vibration		10 Hz to 100 Hz , acceleration of $19.6 \mathrm{~m} / \mathrm{s}^{2}$, 60 minutes per cycle, repeat once in each X, Y and Z-direction		
	Drop		Drop 5 times, at each 5 faces (right, left, front, back and top), from a height of 75 cm onto a concrete surface.		
	Dimensions		Approx. 109 (D) $\times 141.4$ (W) $\times 128.8$ (H) mm		
	Weight		Black model: Approx. 545 g , White model: Approx. 575 g		Excluding the cable
	Housing color		Black / White		
	Anti-microbial		ISO 22196 equivalent		White model only
	Scan window		Pencil hardness: 6 H to 7 H		
			Mohs hardness : 4 equivalent		

9.2.2 Technical Specifications

Reading characteristics

Item		Specification	Notes
Minimum	Code 39	$: 0.127 \mathrm{~mm}$	
	GS1 DataBar	$: 0.254 \mathrm{~mm}$	
	Composite Code	$: 0.254 \mathrm{~mm}$	OPTOELECTRONICS
	PDF417	$: 0.254 \mathrm{~mm}$	test chart
	QR Code	$: 0.381 \mathrm{~mm}$	
	Data Matrix	$: 0.381 \mathrm{~mm}$	

Reading depth of field

Typical values of reading depth are as follows.

Resolution	Code	No. of Digits or Character	Near	Far
	0.33 mm		$12 / 13$ digits	0
0.381 mm	QR Code	44 character	0	50

Note: The depth of field is a determined while using the OPTOELECTRONICS test chart PCS 0.9, without specular reflection and at room temperature and room humidity.

Reading depth of field

9.2.3 Detailed View

Dimensions
Weight
Mechanical Drawing
Approx. 109 (D) $\times 141.4(\mathrm{~W}) \times 128.8(\mathrm{H}) \mathrm{mm}$
Black model: approx. 545 g , White model: approx. 575 g (excluding cable)

[Unit: mm]

9.2.4 Product Label

Example of label attached to the reader is shown below.

9.2.5 Accessories

RS-232C model product is shipped with a dedicated AC adapter.
AC Plugs connectors can be changed for to match local requirements.
Weight Approx. 90 g (Excluding AC plug for exchanging.)
Mechanical Drawing as following drawing

<DC output side>
The polarity of the center of DC jack is plus (+).

9.3 Sample Codes

9.3.1 1D Code

UPC

EAN/JAN

Code 39

Code 39
CODE39

Code39 Italian Pharmaceutical

Code 39 Full ASCII
Code 39

Codabar

Codabar

Codabar ABC	
	56789

Industrial 2 of 5 / Interleaved 2 of 5

Industrial 2 of 5
1234567895

Code 128

Code 93

MSI/Plessey

Telepen

Matrix 2 of 5

9.3.2 Postal Code

POSTNET
III $, \ldots, I_{1} I_{1} l_{1} I_{1} l_{1} I_{1} I_{1}, \ldots l$
012340

Japan Postal
33500024-12-17

UK Postal(Royal mail)

12345678

4-State Mailmark Barcode

9.3.3 GS1 DataBar

9.3.4 GS1 Composite Code

CC-A

Expanded CC-A

Composite GS1-128

CC-A

CC-B

CC-C

Composite EAN

EAN-13 CC-A

EAN-13 CC-B

EAN-8 CC-A
5670 (17) 160401

EAN-8 CC-B

Composite UPC

UPC-A CC-A
314159265358 (17) 170809 10) UPCACCA \square

UPC-A CC-B
9265358 (17) 170809 (10) UPCACCB \|hesk

UPC-E CC-A
01234565 (17) 040104 P\|k

UPC-E CC-B
01234565 (17) 040104 (10) UPCECCB (240) 12345678 upcecc
$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$

9．3．5 2D Code

QR Code
回回
「號
QR Code

Micro QR
回噵
MicroQR

Data Matrix（ECC 200）

Aztec Code
首察
Aztec code

Aztec Runes
目：
025

Chinese－sensible code

Maxi Code
年 $\because \because 6 \because \because 6 \square$
$\because 6$
\because
\％\％\％\％
\％\％：
12345678

9.3.6 OCR Font (Machine Readable Travel Document)

ICAO Travel Documents

Machine readable Passports
P<JPNABCDEFG<<HIJKLMN
L898902C<3JPN4209247M16092711234567890<<<<78

Machine readable Visa-A
L8988901C4XXX4009078F961210962E184226B<<<<<<

Machine readable Visa-B
V 2 UT0ERIKSSON
L8988901C4NA

Official Travel Documents 1
I <UT0D231458907<<<<<<<<<<<<<<<<<l
7408122F1204159UT0<<<<<<<<<<<6
ERIKSSON $<$ ANNA $<$ MARIA $\lll \lll \lll<$

Official Travel Documents 2
I <UTOERIKSSON<<ANNA $<$ MARIA $\lll \lll \lll \ll$
D231458907UT07408122F1204159<<<<<<<6

9.3.7 OCR Font (Free OCR Edit)

OCR-A		OCR-B	
OCR-A Free Edit Enable		OCR-B Free Edit Enable	
4567890		345678	
0123456789012		89012345678	
DEFGHIJ		FGHI JKLMN	
23456CDEFGH		56789012 ABCD	
Free Edit Disable			

We scan, connect and communicate

[^0]: * Setting 3 is a continuous sound of 2 frequencies (high tone \rightarrow low tone, 2 tones).

[^1]: * Intermediate sound frequency: $5000 \mathrm{~Hz}(5 \mathrm{KHz})$, duration: 10 ms

[^2]: * It is strongly recommended to enable only the required codes and options for best reading performance.

[^3]: * For advanced setting, please check the separate sheet "Data Edit Programing Manual".
 * Please contact to the sales offices for the items cannot set.

[^4]: **" are described differently depend on code type, please refer below.

